Weighted Haar and Alpert Wavelets: Degeneracy and Stability

Fletcher Gates

Faculty of Science - Mathematics & Statistics McMaster University

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

1/25

イロト イヨト イヨト イヨト

Stability in non-doubling measures

Table of Contents

Introduction

Degeneracy in weighted Alpert wavelets

Stability in doubling measures

Stability in non-doubling measures

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

Stability in non-doubling measures

Table of Contents

Introduction

Degeneracy in weighted Alpert wavelets

Stability in doubling measures

Stability in non-doubling measures

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

Construction:

Let D be the standard dyadic grid on ℝ.
For l ∈ D define h^l = 1/√|l| (χ_{lieft} - χ_{lright}).
Every h^l is a translate and dilate of h^[0,1].

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

< □ > < 同 > < 回 > < Ξ > < Ξ

æ

Construction:

Let D be the standard dyadic grid on ℝ.
For l ∈ D define h^l = 1/√|l| (χ_{left} - χ_{lright}).
Every h^l is a translate and dilate of h^{[0,1)}.

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

イロト イポト イヨト イヨト

æ

Construction:

- Let D be the standard dyadic grid on \mathbb{R} .
- For $I \in D$ define $h^I = \frac{1}{\sqrt{|I|}} (\chi_{I_{\text{left}}} \chi_{I_{\text{right}}}).$

• Every h^{l} is a translate and dilate of $h^{[0,1)}$.

イロト イポト イヨト イヨト

Construction:

• Let D be the standard dyadic grid on \mathbb{R} .

► For
$$I \in D$$
 define $h^I = \frac{1}{\sqrt{|I|}} (\chi_{I_{\text{left}}} - \chi_{I_{\text{right}}}).$

• Every h' is a translate and dilate of $h^{[0,1)}$.

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

イロト イロト イヨト イヨト

Ξ.

Properties:

▶ $\{h^I\}_{I \in D}$ is an orthonormal basis for $L^2(\mathbb{R})$.

• Telescoping: for any $f \in L^2(\mathbb{R})$

$$\sum_{2^{m+1} \le |I| \le 2^n} \langle f, h' \rangle h' = \sum_{|I|=2^m} \langle f, \frac{1}{2^m} \chi_I \rangle \chi_I - \sum_{|I|=2^n} \langle f, \frac{1}{2^n} \chi_I \rangle \chi_I.$$

- Moment vanishing: each h^{I} has $\int_{\mathbb{R}} h^{I} dx = 0$.
- The Haar basis is stable under small translations and dilations of the wavelets (Wilson, 2017).

(日) (四) (三) (三)

Properties:

- $\{h^I\}_{I \in D}$ is an orthonormal basis for $L^2(\mathbb{R})$.
- Telescoping: for any $f \in L^2(\mathbb{R})$

$$\sum_{2^{m+1} \le |I| \le 2^n} \langle f, h^I \rangle h^I = \sum_{|I|=2^m} \langle f, \frac{1}{2^m} \chi_I \rangle \chi_I - \sum_{|I|=2^n} \langle f, \frac{1}{2^n} \chi_I \rangle \chi_I.$$

- Moment vanishing: each h^{I} has $\int_{\mathbb{R}} h^{I} dx = 0$.
- The Haar basis is stable under small translations and dilations of the wavelets (Wilson, 2017).

(日) (四) (三) (三)

Properties:

- $\{h^I\}_{I \in D}$ is an orthonormal basis for $L^2(\mathbb{R})$.
- Telescoping: for any $f \in L^2(\mathbb{R})$

$$\sum_{2^{m+1} \le |I| \le 2^n} \langle f, h^I \rangle h^I = \sum_{|I| = 2^m} \langle f, \frac{1}{2^m} \chi_I \rangle \chi_I - \sum_{|I| = 2^n} \langle f, \frac{1}{2^n} \chi_I \rangle \chi_I.$$

- Moment vanishing: each h^{I} has $\int_{\mathbb{R}} h^{I} dx = 0$.
- The Haar basis is stable under small translations and dilations of the wavelets (Wilson, 2017).

・ロト ・四ト ・ヨト ・ヨト

Properties:

- $\{h^I\}_{I \in D}$ is an orthonormal basis for $L^2(\mathbb{R})$.
- Telescoping: for any $f \in L^2(\mathbb{R})$

$$\sum_{2^{m+1}\leq |I|\leq 2^n} \langle f, h^I \rangle h^I = \sum_{|I|=2^m} \langle f, \frac{1}{2^m} \chi_I \rangle \chi_I - \sum_{|I|=2^n} \langle f, \frac{1}{2^n} \chi_I \rangle \chi_I.$$

- Moment vanishing: each h^{I} has $\int_{\mathbb{R}} h^{I} dx = 0$.
- The Haar basis is stable under small translations and dilations of the wavelets (Wilson, 2017).

イロト イボト イヨト イヨト

Properties:

- $\{h^I\}_{I \in D}$ is an orthonormal basis for $L^2(\mathbb{R})$.
- Telescoping: for any $f \in L^2(\mathbb{R})$

$$\sum_{2^{m+1}\leq |I|\leq 2^n} \langle f, h^I \rangle h^I = \sum_{|I|=2^m} \langle f, \frac{1}{2^m} \chi_I \rangle \chi_I - \sum_{|I|=2^n} \langle f, \frac{1}{2^n} \chi_I \rangle \chi_I.$$

- Moment vanishing: each h^{I} has $\int_{\mathbb{R}} h^{I} dx = 0$.
- The Haar basis is stable under small translations and dilations of the wavelets (Wilson, 2017).

ヘロト ヘロト ヘヨト ヘヨト

Let μ be a locally finite positive Borel measure.

For each $I \in D$ define

$$h^{I} = \frac{1}{\sqrt{\mu(I)}} \left(\sqrt{\frac{\mu(I_{\mathsf{right}})}{\mu(I_{\mathsf{left}})}} \chi_{I_{\mathsf{left}}} - \sqrt{\frac{\mu(I_{\mathsf{left}})}{\mu(I_{\mathsf{right}})}} \chi_{I_{\mathsf{right}}} \right).$$

- Weighted Haar bases retain orthonormality, telescoping, and
- Weighted Haar bases cannot be constructed through

イロト イヨト イヨト イヨト

Let μ be a locally finite positive Borel measure.

For each $I \in D$ define

$$h' = \frac{1}{\sqrt{\mu(I)}} \bigg(\sqrt{\frac{\mu(I_{\mathsf{right}})}{\mu(I_{\mathsf{left}})}} \chi_{I_{\mathsf{left}}} - \sqrt{\frac{\mu(I_{\mathsf{left}})}{\mu(I_{\mathsf{right}})}} \chi_{I_{\mathsf{right}}} \bigg).$$

Weighted Haar bases cannot be constructed through translations and dilations of a mother wavelet.

イロト イポト イヨト イヨト

Let μ be a locally finite positive Borel measure.

For each $I \in D$ define

$$h' = \frac{1}{\sqrt{\mu(I)}} \bigg(\sqrt{\frac{\mu(I_{\mathsf{right}})}{\mu(I_{\mathsf{left}})}} \chi_{I_{\mathsf{left}}} - \sqrt{\frac{\mu(I_{\mathsf{left}})}{\mu(I_{\mathsf{right}})}} \chi_{I_{\mathsf{right}}} \bigg).$$

- Weighted Haar bases retain orthonormality, telescoping, and moment vanishing.
- Weighted Haar bases cannot be constructed through translations and dilations of a mother wavelet.

イロト イボト イヨト イヨト

Let μ be a locally finite positive Borel measure.

For each $I \in D$ define

$$h' = \frac{1}{\sqrt{\mu(I)}} \left(\sqrt{\frac{\mu(I_{\mathsf{right}})}{\mu(I_{\mathsf{left}})}} \chi_{I_{\mathsf{left}}} - \sqrt{\frac{\mu(I_{\mathsf{left}})}{\mu(I_{\mathsf{right}})}} \chi_{I_{\mathsf{right}}} \right).$$

- Weighted Haar bases retain orthonormality, telescoping, and moment vanishing.
- Weighted Haar bases cannot be constructed through translations and dilations of a mother wavelet.

イロト イポト イヨト イヨト

э.

Let D be a dyadic grid on \mathbb{R} and $k \geq 1$ be an integer.

- For each $I \in D$ choose k functions which are:
 - polynomial of degree less than k on children of I.
 - orthogonal to polynomials of degree less than k.
- The union over all *I* ∈ *D* of such functions forms an Alpert basis for L²(ℝ).
- Alpert bases retain orthonormality, telescoping, and moment vanishing (Alpert, 1991).
- Alpert bases are underdetermined.

イロト イポト イヨト イヨト

- Let D be a dyadic grid on \mathbb{R} and $k \geq 1$ be an integer.
 - For each $I \in D$ choose k functions which are:
 - polynomial of degree less than k on children of I.
 - orthogonal to polynomials of degree less than k.
 - The union over all *I* ∈ *D* of such functions forms an Alpert basis for *L*²(ℝ).
 - Alpert bases retain orthonormality, telescoping, and moment vanishing (Alpert, 1991).
 - Alpert bases are underdetermined.

イロト イポト イヨト イヨト

Let D be a dyadic grid on \mathbb{R} and $k \ge 1$ be an integer.

- For each $I \in D$ choose k functions which are:
 - polynomial of degree less than k on children of I.
 - orthogonal to polynomials of degree less than k.
- The union over all *I* ∈ *D* of such functions forms an Alpert basis for L²(ℝ).
- Alpert bases retain orthonormality, telescoping, and moment vanishing (Alpert, 1991).
- Alpert bases are underdetermined.

イロト イポト イヨト イヨト

Let D be a dyadic grid on \mathbb{R} and $k \ge 1$ be an integer.

- For each $I \in D$ choose k functions which are:
 - polynomial of degree less than k on children of I.
 - orthogonal to polynomials of degree less than k.
- The union over all *I* ∈ *D* of such functions forms an Alpert basis for *L*²(ℝ).
- Alpert bases retain orthonormality, telescoping, and moment vanishing (Alpert, 1991).
- Alpert bases are underdetermined.

イロト イポト イヨト イヨト

Let D be a dyadic grid on \mathbb{R} and $k \ge 1$ be an integer.

- For each $I \in D$ choose k functions which are:
 - polynomial of degree less than k on children of I.
 - orthogonal to polynomials of degree less than k.
- The union over all *I* ∈ *D* of such functions forms an Alpert basis for L²(ℝ).
- Alpert bases retain orthonormality, telescoping, and moment vanishing (Alpert, 1991).
- Alpert bases are underdetermined.

イロト イポト イヨト イヨト

э.

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- For each Q ∈ D define L²_{Q,k}(µ) to be the space of functions on Q which are:
 - polynomial of degree less than k on children of Q.
 - orthogonal to polynomials of degree less than k.
- Taking an orthonormal basis for each L²_{Q,k}(μ) forms an Alpert basis for L²(μ) (with one caveat).
- Weighted Alpert bases retain orthonormality, telescoping, and moment vanishing (Rahm, Sawyer, and Wick, 2019).
- The dimension of $L^2_{Q,k}(\mu)$ depends on the geometry of μ .

イロト イロト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- For each Q ∈ D define L²_{Q,k}(µ) to be the space of functions on Q which are:
 - polynomial of degree less than k on children of Q.
 - orthogonal to polynomials of degree less than k.
- Taking an orthonormal basis for each L²_{Q,k}(μ) forms an Alpert basis for L²(μ) (with one caveat).
- Weighted Alpert bases retain orthonormality, telescoping, and moment vanishing (Rahm, Sawyer, and Wick, 2019).
- The dimension of $L^2_{Q,k}(\mu)$ depends on the geometry of μ .

イロン イ団 と イヨン イヨン

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- For each Q ∈ D define L²_{Q,k}(µ) to be the space of functions on Q which are:
 - polynomial of degree less than k on children of Q.
 - orthogonal to polynomials of degree less than k.
- Taking an orthonormal basis for each L²_{Q,k}(μ) forms an Alpert basis for L²(μ) (with one caveat).
- Weighted Alpert bases retain orthonormality, telescoping, and moment vanishing (Rahm, Sawyer, and Wick, 2019).
- The dimension of $L^2_{Q,k}(\mu)$ depends on the geometry of μ .

イロン イロン イヨン イヨン

э.

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- For each Q ∈ D define L²_{Q,k}(µ) to be the space of functions on Q which are:
 - polynomial of degree less than k on children of Q.
 - orthogonal to polynomials of degree less than k.
- Taking an orthonormal basis for each L²_{Q,k}(μ) forms an Alpert basis for L²(μ) (with one caveat).
- Weighted Alpert bases retain orthonormality, telescoping, and moment vanishing (Rahm, Sawyer, and Wick, 2019).
- The dimension of $L^2_{Q,k}(\mu)$ depends on the geometry of μ .

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- For each Q ∈ D define L²_{Q,k}(µ) to be the space of functions on Q which are:
 - polynomial of degree less than k on children of Q.
 - orthogonal to polynomials of degree less than k.
- Taking an orthonormal basis for each L²_{Q,k}(μ) forms an Alpert basis for L²(μ) (with one caveat).
- Weighted Alpert bases retain orthonormality, telescoping, and moment vanishing (Rahm, Sawyer, and Wick, 2019).
- The dimension of $L^2_{Q,k}(\mu)$ depends on the geometry of μ .

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- Let D be a dyadic grid and consider an increasing nested tower of dyadic cubes Q₁ ⊂ Q₂ ⊂ Q₃ ⊂
- A top T of a dyadic grid is the limit of such a tower.
- A dyadic grid has at least 1 top and at most 2ⁿ tops, and is partitioned by its tops.
- Each top is an "infinite cube" which grows in either one or both directions parallel to each coordinate axis.
- If any monomial of degree less than k is square-integrable on an entire top, it must be included in the weighted Alpert basis (Alexis, Sawyer, and Uriarte-Tuero, 2022).

イロト イロト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- Let D be a dyadic grid and consider an increasing nested tower of dyadic cubes Q₁ ⊂ Q₂ ⊂ Q₃ ⊂
- ► A top *T* of a dyadic grid is the limit of such a tower.
- A dyadic grid has at least 1 top and at most 2ⁿ tops, and is partitioned by its tops.
- Each top is an "infinite cube" which grows in either one or both directions parallel to each coordinate axis.
- If any monomial of degree less than k is square-integrable on an entire top, it must be included in the weighted Alpert basis (Alexis, Sawyer, and Uriarte-Tuero, 2022).

イロト イロト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- Let D be a dyadic grid and consider an increasing nested tower of dyadic cubes Q₁ ⊂ Q₂ ⊂ Q₃ ⊂
- A top T of a dyadic grid is the limit of such a tower.
- A dyadic grid has at least 1 top and at most 2ⁿ tops, and is partitioned by its tops.
- Each top is an "infinite cube" which grows in either one or both directions parallel to each coordinate axis.
- If any monomial of degree less than k is square-integrable on an entire top, it must be included in the weighted Alpert basis (Alexis, Sawyer, and Uriarte-Tuero, 2022).

イロン イロン イヨン イヨン

= nav

Let μ be a locally finite positive Borel measure on \mathbb{R}^n .

- Let D be a dyadic grid and consider an increasing nested tower of dyadic cubes Q₁ ⊂ Q₂ ⊂ Q₃ ⊂
- A top T of a dyadic grid is the limit of such a tower.
- A dyadic grid has at least 1 top and at most 2ⁿ tops, and is partitioned by its tops.
- Each top is an "infinite cube" which grows in either one or both directions parallel to each coordinate axis.
- If any monomial of degree less than k is square-integrable on an entire top, it must be included in the weighted Alpert basis (Alexis, Sawyer, and Uriarte-Tuero, 2022).

イロン イロン イヨン イヨン

I naa

Table of Contents

Introduction

Degeneracy in weighted Alpert wavelets

Stability in doubling measures

Stability in non-doubling measures

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

10 / 25

Let $Q \in D$ be a dyadic cube in \mathbb{R}^n and $k \ge 1$ be an integer.

- All monomials in Lebesgue measure are linearly independent.
- There are $\binom{n+k-1}{k-1}$ monomials in *n* variables of degree less than *k*
- Therefore dim $L^2_{Q,k}(\mathbb{R}) = (2^n 1)\binom{n+k-1}{k-1}$.

イロト イボト イヨト イヨト

Let $Q \in D$ be a dyadic cube in \mathbb{R}^n and $k \ge 1$ be an integer.

- ► All monomials in Lebesgue measure are linearly independent.
- There are $\binom{n+k-1}{k-1}$ monomials in *n* variables of degree less than *k*
- Therefore dim $L^2_{Q,k}(\mathbb{R}) = (2^n 1)\binom{n+k-1}{k-1}$.

イロト イポト イヨト イヨト

э.

Let $Q \in D$ be a dyadic cube in \mathbb{R}^n and $k \ge 1$ be an integer.

- ► All monomials in Lebesgue measure are linearly independent.
- There are $\binom{n+k-1}{k-1}$ monomials in *n* variables of degree less than *k*
- Therefore dim $L^2_{Q,k}(\mathbb{R}) = (2^n 1) \binom{n+k-1}{k-1}$.

イロト イポト イヨト イヨト

Let $Q \in D$ be a dyadic cube in \mathbb{R}^n and $k \ge 1$ be an integer.

- ► All monomials in Lebesgue measure are linearly independent.
- There are $\binom{n+k-1}{k-1}$ monomials in *n* variables of degree less than *k*
- Therefore dim $L^2_{Q,k}(\mathbb{R}) = (2^n 1)\binom{n+k-1}{k-1}$.

イロト イポト イヨト イヨト

= nar

Example

Let k = 1, D be the standard dyadic grid on \mathbb{R} , and μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- For the dyadic interval [0, 1) we have dim $L^2_{[0,1),1}(\mu) = 1$.
- For any dyadic interval $I \neq [0, 1)$, dim $L^2_{I,1}(\mu) = 0$.
- L²(µ) has dimension 2 and is spanned by a constant function and a Haar wavelet on [0, 1).

イロト イボト イヨト イヨ
Example

Let k = 1, D be the standard dyadic grid on \mathbb{R} , and μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- For the dyadic interval [0, 1) we have dim $L^2_{[0,1),1}(\mu) = 1$.
- For any dyadic interval $I \neq [0,1)$, dim $L^2_{I,1}(\mu) = 0$.
- L²(µ) has dimension 2 and is spanned by a constant function and a Haar wavelet on [0, 1).

Example

Let k = 1, D be the standard dyadic grid on \mathbb{R} , and μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- For the dyadic interval [0, 1) we have dim $L^2_{[0,1),1}(\mu) = 1$.
- For any dyadic interval $I \neq [0,1)$, dim $L^2_{I,1}(\mu) = 0$.
- L²(µ) has dimension 2 and is spanned by a constant function and a Haar wavelet on [0, 1).

イロト イボト イヨト イヨト

Example

Let k = 1, D be the standard dyadic grid on \mathbb{R} , and μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- For the dyadic interval [0, 1) we have dim $L^2_{[0,1),1}(\mu) = 1$.
- For any dyadic interval $I \neq [0, 1)$, dim $L^2_{I,1}(\mu) = 0$.
- L²(µ) has dimension 2 and is spanned by a constant function and a Haar wavelet on [0, 1).

イロト イボト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

Denote by P_{Q,k}(µ) the space of polynomials on Q which have degree less than k.

Theorem

$$\dim L^2_{Q,k} = \sum_{Q' \in C(Q)} \dim P_{Q',k}(\mu) - \dim P_{Q,k}(\mu).$$

This extends to the additional moment vanishing conditions; each additional orthogonal monomial reduces the total dimension by 1.

イロト イヨト イヨト イヨト

э

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

Denote by P_{Q,k}(µ) the space of polynomials on Q which have degree less than k.

Theorem

$$\dim L^2_{Q,k} = \sum_{Q' \in C(Q)} \dim P_{Q',k}(\mu) - \dim P_{Q,k}(\mu).$$

This extends to the additional moment vanishing conditions; each additional orthogonal monomial reduces the total dimension by 1.

イロト イボト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

Denote by P_{Q,k}(µ) the space of polynomials on Q which have degree less than k.

Theorem

$$\dim L^2_{Q,k} = \sum_{Q' \in C(Q)} \dim P_{Q',k}(\mu) - \dim P_{Q,k}(\mu).$$

This extends to the additional moment vanishing conditions; each additional orthogonal monomial reduces the total dimension by 1.

イロト イボト イヨト イヨト

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

Denote by P_{Q,k}(µ) the space of polynomials on Q which have degree less than k.

Theorem

$$\dim L^2_{Q,k} = \sum_{Q' \in C(Q)} \dim P_{Q',k}(\mu) - \dim P_{Q,k}(\mu).$$

This extends to the additional moment vanishing conditions; each additional orthogonal monomial reduces the total dimension by 1.

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

イロト イポト イヨト イヨト

э.

Classification

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

- ► The dimension theorem reduces the task of finding dim $L^2_{Q,k}$ to finding dim $P_{Q,k}(\mu)$.
- Equivalently, this is the task of finding all linear dependencies in $L^2(\mu)$ among the monomials of degree less than k.
- A monomial basis for some fixed k can be found by brute force using Gram-Schmidt.
- A more elegant solution uses techniques from algebraic geometry to find the set of all polynomials which vanish on the support of μ .

イロト イロト イヨト イヨト

э

Classification

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

- ► The dimension theorem reduces the task of finding dim $L^2_{Q,k}$ to finding dim $P_{Q,k}(\mu)$.
- Equivalently, this is the task of finding all linear dependencies in L²(µ) among the monomials of degree less than k.
- A monomial basis for some fixed k can be found by brute force using Gram-Schmidt.
- A more elegant solution uses techniques from algebraic geometry to find the set of all polynomials which vanish on the support of μ.

ヘロト ヘロト ヘヨト ヘヨト

Classification

Let μ be a locally finite positive Borel measure on \mathbb{R}^n , $Q \in D$ be a dyadic cube, and $k \ge 1$ be an integer.

- ► The dimension theorem reduces the task of finding dim $L^2_{Q,k}$ to finding dim $P_{Q,k}(\mu)$.
- Equivalently, this is the task of finding all linear dependencies in L²(µ) among the monomials of degree less than k.
- A monomial basis for some fixed k can be found by brute force using Gram-Schmidt.
- A more elegant solution uses techniques from algebraic geometry to find the set of all polynomials which vanish on the support of μ.

イロト 不同 トイヨト イヨト

I naa

Table of Contents

Introduction

Degeneracy in weighted Alpert wavelets

Stability in doubling measures

Stability in non-doubling measures

・ロト・日本・ キョト・ キョー つんの

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

15 / 25

Almost-Orthogonality

A set {φ_γ}_{γ∈Γ} ⊂ L²(μ) is almost-orthogonal with AO-constant
0 ≤ B if for all finite F ∈ Γ and real numbers λ_γ we have

$$\left\|\sum_{\gamma\in F}\lambda_{\gamma}\phi_{\gamma}\right\|_{2} \leq B\left(\sum_{\gamma\in F}|\lambda_{\gamma}|^{2}\right)^{1/2}$$

Suppose that $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ is an orthonormal basis for $L^{2}(\mu)$ and $\{\phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is a family such that $\{\phi_{\gamma} - \phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is almost-orthogonal with AO-constant δ . Then for any $f \in L^{2}(\mu)$ the series $\sum_{\gamma\in\Gamma} \langle f, \phi_{\gamma}^{*} \rangle \phi_{\gamma}^{*}$ converges to some $\tilde{f} \in L^{2}(\mu)$ and $\|f - \tilde{f}\|_{2} \leq \delta(2 + \delta)\|f\|_{2}$.

Almost-Orthogonality

A set {φ_γ}_{γ∈Γ} ⊂ L²(μ) is almost-orthogonal with AO-constant
0 ≤ B if for all finite F ∈ Γ and real numbers λ_γ we have

$$\left\|\sum_{\gamma \in \mathcal{F}} \lambda_{\gamma} \phi_{\gamma}\right\|_{2} \leq B\left(\sum_{\gamma \in \mathcal{F}} |\lambda_{\gamma}|^{2}\right)^{1/2}$$

Suppose that $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ is an orthonormal basis for $L^{2}(\mu)$ and $\{\phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is a family such that $\{\phi_{\gamma} - \phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is almost-orthogonal with AO-constant δ . Then for any $f \in L^{2}(\mu)$ the series $\sum_{\gamma\in\Gamma} \langle f, \phi_{\gamma}^{*} \rangle \phi_{\gamma}^{*}$ converges to some $\tilde{f} \in L^{2}(\mu)$ and $\|f - \tilde{f}\|_{2} \leq \delta(2 + \delta)\|f\|_{2}$.

Almost-Orthogonality

A set {φ_γ}_{γ∈Γ} ⊂ L²(μ) is almost-orthogonal with AO-constant
0 ≤ B if for all finite F ∈ Γ and real numbers λ_γ we have

$$\left\|\sum_{\gamma\in F}\lambda_{\gamma}\phi_{\gamma}\right\|_{2} \leq B\left(\sum_{\gamma\in F}|\lambda_{\gamma}|^{2}\right)^{1/2}$$

Suppose that $\{\phi_{\gamma}\}_{\gamma\in\Gamma}$ is an orthonormal basis for $L^{2}(\mu)$ and $\{\phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is a family such that $\{\phi_{\gamma} - \phi_{\gamma}^{*}\}_{\gamma\in\Gamma}$ is almost-orthogonal with AO-constant δ . Then for any $f \in L^{2}(\mu)$ the series $\sum_{\gamma\in\Gamma} \langle f, \phi_{\gamma}^{*} \rangle \phi_{\gamma}^{*}$ converges to some $\tilde{f} \in L^{2}(\mu)$ and $\|f - \tilde{f}\|_{2} \leq \delta(2 + \delta)\|f\|_{2}$.

イロト イポト イヨト イヨト

э

Let μ be a locally-finite positive Borel measure on \mathbb{R} .

- Choose $0 \le \eta < \frac{1}{2}$ and a dyadic grid *D*.
- For each $I \in D$, choose η_I such that $0 \le |\eta_I| \le \eta$.
- ▶ Define I^* to be the translation of I by $\eta_I \cdot \text{length}(I)$.
- ▶ Define h^{I^*} to be the Haar wavelet for I^* in $L^2(\mu)$.

Theorem

If μ is doubling then $\{h^{I} - h^{I^{*}}\}_{I \in D}$ is almost orthogonal with AO-constant at most $C\eta^{p}$ with constants C, p > 0 that depend only on μ .

イロト イボト イヨト イヨト

э

Let μ be a locally-finite positive Borel measure on \mathbb{R} .

• Choose $0 \le \eta < \frac{1}{2}$ and a dyadic grid *D*.

For each $I \in D$, choose η_I such that $0 \le |\eta_I| \le \eta$.

• Define I^* to be the translation of I by $\eta_I \cdot \text{length}(I)$.

• Define h^{I^*} to be the Haar wavelet for I^* in $L^2(\mu)$.

Theorem

If μ is doubling then $\{h^{I} - h^{I^{*}}\}_{I \in D}$ is almost orthogonal with AO-constant at most $C\eta^{p}$ with constants C, p > 0 that depend only on μ .

イロト イボト イヨト イヨト

Let μ be a locally-finite positive Borel measure on \mathbb{R} .

- Choose $0 \le \eta < \frac{1}{2}$ and a dyadic grid *D*.
- For each $I \in D$, choose η_I such that $0 \le |\eta_I| \le \eta$.
- Define I^* to be the translation of I by $\eta_I \cdot \text{length}(I)$.
- Define h^{I^*} to be the Haar wavelet for I^* in $L^2(\mu)$.

Theorem

If μ is doubling then $\{h^{I} - h^{I^{*}}\}_{I \in D}$ is almost orthogonal with AO-constant at most $C\eta^{p}$ with constants C, p > 0 that depend only on μ .

イロト イポト イヨト イヨト

Let μ be a locally-finite positive Borel measure on \mathbb{R} .

- Choose $0 \le \eta < \frac{1}{2}$ and a dyadic grid *D*.
- For each $I \in D$, choose η_I such that $0 \le |\eta_I| \le \eta$.
- Define I^* to be the translation of I by $\eta_I \cdot \text{length}(I)$.
- Define h^{I^*} to be the Haar wavelet for I^* in $L^2(\mu)$.

Theorem

If μ is doubling then $\{h^{I} - h^{I^{*}}\}_{I \in D}$ is almost orthogonal with AO-constant at most $C\eta^{p}$ with constants C, p > 0 that depend only on μ .

イロト 不得 トイヨト イヨト

I naa

Proof structure:

• Goal: show that for all $I \in D$

$$\sum_{J\in D} \left| \langle h^{I} - h^{I^{*}}, h^{J} \rangle \right| \leq C \eta^{p}$$

and similarly with I and J reversed.

- For fixed *I*, *J*, most ⟨*h^{I*}*, *h^J*⟩ = 0. Remaining inner products reduce to ratios of measures of intervals.
- Both sums over all I and J converge with bound at most

$$\frac{36k^5}{(k^2-1)(k-1)}\eta^{\log_2\left(\frac{k^2-\frac{1}{c_k}}{k^2-1}\right)} + \frac{18\sqrt{2}k^3}{k-\sqrt{k^2-1}}\eta^{\frac{1}{2c_k}\log_2\left(\frac{k^2}{k^2-1}\right)} + \left(4k^4 + \frac{10k^7}{k^2-1}\right)\eta^{\log_2\left(\frac{k^2}{k^2-1}\right)}.$$

Proof structure:

• Goal: show that for all $I \in D$

$$\sum_{J\in D} \left| \langle h^{I} - h^{I^{*}}, h^{J} \rangle \right| \leq C \eta^{p}$$

and similarly with I and J reversed.

- For fixed *I*, *J*, most ⟨*h^{I*}*, *h^J*⟩ = 0. Remaining inner products reduce to ratios of measures of intervals.
- Both sums over all I and J converge with bound at most

$$\frac{36k^5}{(k^2-1)(k-1)}\eta^{\log_2\left(\frac{k^{2-\frac{1}{c_k}}}{k^2-1}\right)} + \frac{18\sqrt{2}k^3}{k-\sqrt{k^2-1}}\eta^{\frac{1}{2c_k}\log_2\left(\frac{k^2}{k^2-1}\right)} + \left(4k^4 + \frac{10k^7}{k^{2-1}}\right)\eta^{\log_2\left(\frac{k^2}{k^2-1}\right)}.$$

Proof structure:

• Goal: show that for all $I \in D$

$$\sum_{J\in D} \left| \langle h^{I} - h^{I^{*}}, h^{J} \rangle \right| \leq C \eta^{p}$$

and similarly with I and J reversed.

For fixed I, J, most ⟨h^{I*}, h^J⟩ = 0. Remaining inner products reduce to ratios of measures of intervals.

Both sums over all I and J converge with bound at most

$$\frac{36k^5}{(k^2-1)(k-1)}\eta^{\log_2\left(\frac{k^2-\frac{1}{c_k}}{k^2-1}\right)} + \frac{18\sqrt{2}k^3}{k-\sqrt{k^2-1}}\eta^{\frac{1}{2c_k}\log_2\left(\frac{k^2}{k^2-1}\right)} + \left(4k^4 + \frac{10k^7}{k^2-1}\right)\eta^{\log_2\left(\frac{k^2}{k^2-1}\right)}.$$

Proof structure:

• Goal: show that for all $I \in D$

$$\sum_{J\in D} \left| \langle h^{I} - h^{I^{*}}, h^{J} \rangle \right| \leq C \eta^{p}$$

and similarly with I and J reversed.

- For fixed I, J, most ⟨h^{I*}, h^J⟩ = 0. Remaining inner products reduce to ratios of measures of intervals.
- Both sums over all I and J converge with bound at most

$$\frac{36k^5}{(k^2-1)(k-1)}\eta^{\log_2\left(\frac{k^2-\frac{1}{c_k}}{k^2-1}\right)} + \frac{18\sqrt{2}k^3}{k-\sqrt{k^2-1}}\eta^{\frac{1}{2c_k}\log_2\left(\frac{k^2}{k^2-1}\right)} + \left(4k^4 + \frac{10k^7}{k^2-1}\right)\eta^{\log_2\left(\frac{k^2}{k^2-1}\right)}$$

Proof structure:

• Goal: show that for all $I \in D$

$$\sum_{J\in D} \left| \langle h^{I} - h^{I^{*}}, h^{J} \rangle \right| \leq C \eta^{p}$$

and similarly with I and J reversed.

- For fixed I, J, most ⟨h^{I*}, h^J⟩ = 0. Remaining inner products reduce to ratios of measures of intervals.
- Both sums over all I and J converge with bound at most

$$\frac{36k^5}{(k^2-1)(k-1)}\eta^{\log_2\left(\frac{k^2-\frac{1}{c_k}}{k^2-1}\right)} + \frac{18\sqrt{2}k^3}{k-\sqrt{k^2-1}}\eta^{\frac{1}{2c_k}\log_2\left(\frac{k^2}{k^2-1}\right)} + \left(4k^4 + \frac{10k^7}{k^2-1}\right)\eta^{\log_2\left(\frac{k^2}{k^2-1}\right)}.$$

Problems:

- Alpert wavelets are underdetermined.
- ► Given Q ∈ D, we need to match wavelets on Q to wavelets Q* to use almost-orthogonality.
- There is no "obvious" way to take a function in $L^2_{Q,k}(\mu)$ and relate it to a function in $L^2_{Q^*,k}(\mu)$.

Problems:

- Alpert wavelets are underdetermined.
- ► Given Q ∈ D, we need to match wavelets on Q to wavelets Q* to use almost-orthogonality.
- ► There is no "obvious" way to take a function in $L^2_{Q,k}(\mu)$ and relate it to a function in $L^2_{Q^*,k}(\mu)$.

イロト イポト イヨト イヨト

э

Problems:

- Alpert wavelets are underdetermined.
- ► Given Q ∈ D, we need to match wavelets on Q to wavelets Q* to use almost-orthogonality.
- There is no "obvious" way to take a function in $L^2_{Q,k}(\mu)$ and relate it to a function in $L^2_{Q^*,k}(\mu)$.

イロト イポト イヨト イヨト

Problems:

- Alpert wavelets are underdetermined.
- ► Given Q ∈ D, we need to match wavelets on Q to wavelets Q* to use almost-orthogonality.
- ► There is no "obvious" way to take a function in $L^2_{Q,k}(\mu)$ and relate it to a function in $L^2_{Q^*,k}(\mu)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Solution:

- Choose an ordering on the children of a dyadic cube and the N_k monomials in Rⁿ of degree less than k.
- Let S be the ordered tuple containing the restrictions of the monomials to Q, then to Q₁, Q₂, ..., Q_{2ⁿ}.
- ► Apply Gram-Schmidt to *S*.
 - First N_k outputs are an orthonormal basis for $P_{Q,k}(\mu)$.
 - Final N_k outputs are all zero.
 - ▶ Remaining (2ⁿ − 1)N_k outputs are an orthonormal basis for L²_{Q,k}(µ).
- Gram-Schmidt is continuous, so it suffices to show that the monomials on Q are close to the monomials on Q*.

イロン イ団 と イヨン イヨン

э

Solution:

- Choose an ordering on the children of a dyadic cube and the N_k monomials in Rⁿ of degree less than k.
- Let S be the ordered tuple containing the restrictions of the monomials to Q, then to Q₁, Q₂, ..., Q_{2ⁿ}.
- ► Apply Gram-Schmidt to *S*.
 - First N_k outputs are an orthonormal basis for $P_{Q,k}(\mu)$.
 - Final N_k outputs are all zero.
 - Remaining (2ⁿ 1)N_k outputs are an orthonormal basis for L²_{Q,k}(µ).
- ▶ Gram-Schmidt is continuous, so it suffices to show that the monomials on *Q* are close to the monomials on *Q*^{*}.

イロン イロン イヨン イヨン

Solution:

- Choose an ordering on the children of a dyadic cube and the N_k monomials in Rⁿ of degree less than k.
- Let S be the ordered tuple containing the restrictions of the monomials to Q, then to Q₁, Q₂, ..., Q_{2ⁿ}.
- ► Apply Gram-Schmidt to *S*.
 - First N_k outputs are an orthonormal basis for $P_{Q,k}(\mu)$.
 - Final N_k outputs are all zero.
 - Remaining (2ⁿ 1)N_k outputs are an orthonormal basis for L²_{Q,k}(µ).
- ▶ Gram-Schmidt is continuous, so it suffices to show that the monomials on *Q* are close to the monomials on *Q*^{*}.

イロン イロン イヨン イヨン

Solution:

- Choose an ordering on the children of a dyadic cube and the N_k monomials in Rⁿ of degree less than k.
- Let S be the ordered tuple containing the restrictions of the monomials to Q, then to Q₁, Q₂, ..., Q_{2ⁿ}.
- ► Apply Gram-Schmidt to *S*.
 - First N_k outputs are an orthonormal basis for $P_{Q,k}(\mu)$.
 - Final N_k outputs are all zero.
 - Remaining $(2^n 1)N_k$ outputs are an orthonormal basis for $L^2_{Q,k}(\mu)$.
- Gram-Schmidt is continuous, so it suffices to show that the monomials on Q are close to the monomials on Q*.

イロト イヨト イヨト イヨト

Solution:

- Choose an ordering on the children of a dyadic cube and the N_k monomials in Rⁿ of degree less than k.
- Let S be the ordered tuple containing the restrictions of the monomials to Q, then to Q₁, Q₂, ..., Q_{2ⁿ}.
- ► Apply Gram-Schmidt to *S*.
 - First N_k outputs are an orthonormal basis for $P_{Q,k}(\mu)$.
 - Final N_k outputs are all zero.
 - Remaining $(2^n 1)N_k$ outputs are an orthonormal basis for $L^2_{Q,k}(\mu)$.
- Gram-Schmidt is continuous, so it suffices to show that the monomials on Q are close to the monomials on Q*.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stability in non-doubling measures \circ

Table of Contents

Introduction

Degeneracy in weighted Alpert wavelets

Stability in doubling measures

Stability in non-doubling measures

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Weighted Haar and Alpert Wavelets: Degeneracy and Stability

21 / 25

Intuitive Idea

Let μ be a non-doubling measure

- For η arbitrarily small, find an interval I where $\mu(I^*) \gg \mu(I)$.
- Find a function near *I* where projections onto *h^I* and *h^{I*}* are far apart.
- Problem: this doesn't work.
- Problem 1: Haar wavelets depend on the distribution of mass inside *I*.
- Problem 2: *I* is not necessarily a dyadic interval.

Intuitive Idea

Let μ be a non-doubling measure

- For η arbitrarily small, find an interval I where $\mu(I^*) \gg \mu(I)$.
- Find a function near *I* where projections onto *h^I* and *h^{I*}* are far apart.
- Problem: this doesn't work.
- Problem 1: Haar wavelets depend on the distribution of mass inside *I*.
- Problem 2: *I* is not necessarily a dyadic interval.

Intuitive Idea

Let μ be a non-doubling measure

- For η arbitrarily small, find an interval I where $\mu(I^*) \gg \mu(I)$.
- Find a function near *I* where projections onto *h^I* and *h^{I*}* are far apart.
- Problem: this doesn't work.
- Problem 1: Haar wavelets depend on the distribution of mass inside *I*.
- Problem 2: *I* is not necessarily a dyadic interval.
Intuitive Idea

Let μ be a non-doubling measure

- For η arbitrarily small, find an interval I where $\mu(I^*) \gg \mu(I)$.
- Find a function near *I* where projections onto *h^I* and *h^{I*}* are far apart.
- Problem: this doesn't work.
- Problem 1: Haar wavelets depend on the distribution of mass inside *I*.
- Problem 2: I is not necessarily a dyadic interval.

イロト イポト イヨト イヨト

3

Intuitive Idea

Let μ be a non-doubling measure

- For η arbitrarily small, find an interval I where $\mu(I^*) \gg \mu(I)$.
- Find a function near *I* where projections onto *h^I* and *h^{I*}* are far apart.
- Problem: this doesn't work.
- Problem 1: Haar wavelets depend on the distribution of mass inside *I*.
- Problem 2: I is not necessarily a dyadic interval.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Let μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- Let *D* be the standard dyadic grid.
- $L^2(\mu)$ is spanned by 1 and $h^{[0,1)}$.
- ▶ h^{I} is non-zero iff $\frac{1}{4} \in I_{\text{left}}$ and $\frac{3}{4} \in I_{\text{right}}$.
- lf h^{l} is non-zero then $h^{l} = h^{[0,1)}$.
- For $\eta < \frac{1}{4}$, $h^{I^*} = h^{[0,1]}$ iff I = [0,1).
- The Haar basis for D on μ is stable when $\eta < \frac{1}{4}$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Let μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- Let D be the standard dyadic grid.
- $L^2(\mu)$ is spanned by 1 and $h^{[0,1)}$.
- ▶ h' is non-zero iff $\frac{1}{4} \in I_{\text{left}}$ and $\frac{3}{4} \in I_{\text{right}}$.
- lf h^{l} is non-zero then $h^{l} = h^{[0,1)}$.
- For $\eta < \frac{1}{4}$, $h^{I^*} = h^{[0,1]}$ iff I = [0,1).
- The Haar basis for D on μ is stable when $\eta < \frac{1}{4}$.

イロト イボト イヨト イヨ

Let μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- Let D be the standard dyadic grid.
- $L^2(\mu)$ is spanned by 1 and $h^{[0,1)}$.
- ▶ h^{I} is non-zero iff $\frac{1}{4} \in I_{\mathsf{left}}$ and $\frac{3}{4} \in I_{\mathsf{right}}$.
- If h' is non-zero then $h' = h^{[0,1)}$.
- For $\eta < \frac{1}{4}$, $h^{I^*} = h^{[0,1)}$ iff I = [0,1).
- The Haar basis for D on μ is stable when $\eta < \frac{1}{4}$.

イロト イポト イヨト イヨト

Let μ be the measure with point masses at $\frac{1}{4}$ and $\frac{3}{4}$ and no mass elsewhere.

- Let D be the standard dyadic grid.
- $L^2(\mu)$ is spanned by 1 and $h^{[0,1)}$.
- h' is non-zero iff $\frac{1}{4} \in I_{\text{left}}$ and $\frac{3}{4} \in I_{\text{right}}$.
- If h' is non-zero then $h' = h^{[0,1)}$.
- For $\eta < \frac{1}{4}$, $h^{I^*} = h^{[0,1)}$ iff I = [0,1).
- The Haar basis for D on μ is stable when $\eta < \frac{1}{4}$.

イロト イポト イヨト イヨト

- If µ is doubling then the Haar basis is stable for any choice of grid.
- If µ contains a point mass then there are grids for which the Haar basis is unstable.
- If μ contains an open set of measure 0 then there are grids for which the Haar basis is unstable.
- Conjecture: μ is doubling if and only if the Haar basis is stable for any choice of grid.

イロト イボト イヨト イヨト

- If µ is doubling then the Haar basis is stable for any choice of grid.
- If µ contains a point mass then there are grids for which the Haar basis is unstable.
- If μ contains an open set of measure 0 then there are grids for which the Haar basis is unstable.
- Conjecture: μ is doubling if and only if the Haar basis is stable for any choice of grid.

イロト イボト イヨト イヨト

3

- If µ is doubling then the Haar basis is stable for any choice of grid.
- If µ contains a point mass then there are grids for which the Haar basis is unstable.
- If μ contains an open set of measure 0 then there are grids for which the Haar basis is unstable.
- Conjecture: μ is doubling if and only if the Haar basis is stable for any choice of grid.

イロト イボト イヨト イヨト

3

- If µ is doubling then the Haar basis is stable for any choice of grid.
- If µ contains a point mass then there are grids for which the Haar basis is unstable.
- If μ contains an open set of measure 0 then there are grids for which the Haar basis is unstable.
- Conjecture: μ is doubling if and only if the Haar basis is stable for any choice of grid.

・ロト ・四ト ・ヨト ・ヨト

э.

- If µ is doubling then the Haar basis is stable for any choice of grid.
- If µ contains a point mass then there are grids for which the Haar basis is unstable.
- If μ contains an open set of measure 0 then there are grids for which the Haar basis is unstable.
- Conjecture: μ is doubling if and only if the Haar basis is stable for any choice of grid.

イロト イポト イヨト イヨト

= nar

Summary

- Weighted Alpert wavelets are degenerate when µ is supported inside the solution set to a collection of polynomials.
- The Alpert spaces L²_{Q,k}(μ) decompose into polynomial spaces P_{Q,k}(μ).
- Weighted Alpert wavelets are stable in doubling measures.
- Weighted Haar wavelets can be conditionally stable in non-doubling measures.
- Open question whether non-doubling measures can be unconditionally stable.

イロト イポト イヨト イヨト

э.