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Introduction

In this talk, we will consider the incompressible Euler
equation:

∂tu+ (u · ∇)u+∇p = 0 (1)
∇ · u = 0. (2)

Smooth solutions of the Euler equations are known to exist
globally in time for smooth initial data in R2 [Wolibner
(1933), Hölder (1933)]
There are also global smooth solutions in three dimensions
in the presence of axial symmetry, without swirl [Ukhovskii
and Yudovich (1968), X. Saint-Raymond (1994), Danchin
(2007)].
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Beale-Kato-Majda Criterion

One of the most central results for the regularity of solutions to
the Euler equation in three and higher dimensions is the
Beale-Kato-Majda criterion, which states that if a smooth
solution to the Euler equation blows up in finite-time
Tmax < +∞, then∫ Tmax

0
∥ω(·, t)∥L∞ dt = +∞. (3)
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The setup

We will consider axisymmetric, swirl-free solutions of the
Euler equation, which have the form

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez (4)

The coordinates in this case are given by

r =
√
x21 + ...+ x2d−1 (5)

z = xd (6)

er =
1

r
(x1, ..., xd−1, 0) (7)

ez = ed (8)
k = d− 2. (9)
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The evolution equation

The divergence free constraint can now be expressed by

∇ · u = ∂rur +
k

r
ur + ∂zuz = 0. (10)

The scalar vorticity is given by

ω = ∂ruz − ∂zur. (11)

The evolution equation for the vorticity is given by

∂tω + (u · ∇)ω − k

r
urω = 0. (12)

This results in the quantity ω
rk

being transported by the
flow.

(∂t + u · ∇)
ω

rk
= 0. (13)
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Singular Structure

This leads to a potential mechanism for singularity
formation that is ruled out for smooth solutions in three
dimensions.
If u ∈ C2

(
Rd
)
, then ω

r ∈ L∞.
There is global regularity for smooth, axisymmetric
solutions of the Euler equation in three dimensions.
However, for rougher solutions, where ω0

r is unbounded,
Elgindi proved that there can be finite-time blowup in this
setup.
In R4, even for Schwartz class initial data, ω0

r2
may be

unbounded, so there is no barrier to finite-time blowup.
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Higher dimensional dynamics

Even when ω0

rk
is bounded in higher dimensions, this cannot

immediately lead to global regularity by the standard
methods in three dimensions.
In general, if ω0

rk
is bounded and the vorticity is compactly

supported, the radius of this support has bounded growth
of the form

dR

dt
≤ C(ω0)R

d
2
−1. (14)

For d = 3, this gives quadratic growth in time, as proved by
Choi and Jeong (2021).
When d = 4, this gives exponential growth, and for d ≥ 5,
this bound cannot rule out finite-time blowup.
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The potential for growth

Even in the case where ω0

rk
is bounded, it is not readily

apparent that there is global regularity in sufficiently high
dimensions.
There could still be growth if the flow carries points out to
infinity in finite-time.
Even when ω0

rk
is bounded, this only provides control on ω

when there is some control on the stretching in the radial
direction.
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Key growth estimates

ω (X(r, z, t)) =
ω0(r, z)

rk
Xr(r, z, t)

k (15)

Xr(r, z, t) ≤ r +

∫ t

0
∥u+r (·, τ)∥L∞ dτ. (16)

|ω(X(r, z, t), t)| ≤ |ω0(r, z)|
rk

(
r +

∫ t

0
∥u+r (·, τ)∥L∞ dτ

)k
(17)

= |ω0(r, z)|
(
1 +

1

r

∫ t

0
∥u+r (·, τ)∥L∞ dτ

)k
(18)
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Key growth estimates (cont.)

∥ω(·, t)∥L∞ ≤ max

(∥∥ω0
∥∥
L∞(Cc

R)
, Rk

∥∥∥∥ω0

rk

∥∥∥∥
L∞(CR)

)
(
1 +

1

R

∫ t

0
∥u+r (·, τ)∥L∞ dτ

)k
. (19)

∥ω(·, t)∥L1 ≤

(∥∥ω0
∥∥
L1(Cc

R)
+Rk

∥∥∥∥ω0

rk

∥∥∥∥
L1(CR)

)
(
1 +

1

R

∫ t

0
∥u+r (·, τ)∥L∞ dτ

)k
. (20)

∥ur∥L∞ ≤ Cd

∥∥∥ ω
rk

∥∥∥ 1
2

L∞
∥ω∥

1
2

L1 . (21)
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The essential lemma
Lemma
Suppose u is an axisymmetric, swirl-free solution of the Euler
equation, and that ω0

rk
∈ L1 ∩ L∞. Then for all R > 0,

∥ur(·, t)∥L∞ ≤ Cd

∥∥∥∥ω0

rk

∥∥∥∥
1
2

L∞

(∥∥ω0
∥∥
L1(Cc

R)
+Rk

∥∥∥∥ω0

rk

∥∥∥∥
L1(CR)

) 1
2

(
1 +

1

R

∫ t

0
∥ur(·, τ)∥L∞ dτ

) k
2

. (22)

Note that if

f(t) = 1 +
1

R

∫ t

0
∥ur(·, τ)∥L∞ dτ, (23)

df

dt
≤ µf

k
2 . (24)
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Global regularity in three dimensions

Theorem
Suppose u0 is axisymmetric and swirl-free and d = 3. Then
there is a global smooth solution of the Euler equation, with for
all 0 ≤ t < +∞,

∥ω(·, t)∥L∞ ≤ max

(∥∥ω0
∥∥
L∞(Cc

R)
, R

∥∥∥∥ω0

r

∥∥∥∥
L∞(CR)

)(
1 +

1

2
µt

)2

,

(25)

This bound is proven by Choi and Jeong with additional
condition of compact support, but removing this condition does
not require a fundamental change in methods.
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Global regularity in four dimensions

Theorem
Suppose u0 is axisymmetric and swirl-free, d = 4, and
ω0

r2
∈ L1 ∩ L∞. Then there is a global smooth solution of the

Euler equation, with for all 0 ≤ t < +∞,

∥ω(·, t)∥L∞ ≤ max

(∥∥ω0
∥∥
L∞(Cc

R)
, R2

∥∥∥∥ω0

r2

∥∥∥∥
L∞(CR)

)
exp(2µt),

(26)
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Global regularity in four dimensions

Theorem
Suppose u0 is axisymmetric and swirl-free, d ≥ 5, and
ω0

rk
∈ L1 ∩ L∞. Then for all 0 ≤ t < Tmax,

∥ω(·, t)∥L∞ ≤
max

(∥∥ω0
∥∥
L∞ , Rk

∥∥∥ω0

rk

∥∥∥
L∞

)
(1− αt)

d−2
d−4

, (27)
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Regularity criteria

Theorem
Suppose u is a axisymmetric, swirl-free smooth solution of the
Euler equation on Rd, d ≥ 5 and that ω0

rk
∈ L1 ∩ L∞. Then for

all 0 ≤ t < Tmax,

∥ω(·, t)∥L1(Rd) ≥
Cd
[
ω0
]

(Tmax − t)
2(d−2)
d−4

, (28)

and ∫ Tmax

0

∥∥u+r (·, t)∥∥dt = +∞. (29)
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Conjecture

Conjecture

There exists a d0 ≥ 5, such that for all d ≥ d0, if
u0 ∈ Hs

as&df

(
Rd
)
, s > 1 + d

2 , such that the associated vorticity
ω0 is odd in z, and for all z > 0, ω0(r, z) ≥ 0, and the smooth
solution u ∈ C

(
[0, Tmax);H

s
df

(
Rd
))

∩C1
(
[0, Tmax), H

s−1
df

(
Rd
))

with initial data u0 blows up up in finite-time, Tmax < +∞.

Heuristic arguments based on scaling suggest that finite-time
blowup should occur for d ≥ 6, but proving this would require
much finer knowledge about the behaviour of solutions.
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Blowup Scenario

Our possible scenario for finite-time blowup involves a
vorticity that is odd in z and positive for z > 0.
This geometric setup—axisymmetric, swirl-free, with a sign
condition on the vorticity, has substantial precedent for
finite or infinite-time blowup.
In this scenario for the three dimensional Euler equation,
Elgindi (2021) proved finite-time blowup for non-smooth
solutions of the 3D Euler equation, and Choi and Jeong
(2021) proved the proved the blowup at infinity of the
vorticity with

∥ω(·, t)∥L∞ ≥ C(1 + t)
1
15

−ϵ. (30)

To justify this blowup scenario, we will consider the
limiting equation for the vorticity when we take d→ ∞,
and prove blowup in this case.
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The stream function
There is a stream function formulation of the vorticity
equation in four and higher dimensions as well:

uz = −1

k
∂rψ̃ − ψ̃

r
(31)

ur =
1

k
∂zψ̃ (32)(

−1

k
∂2z −

1

k
∂2r −

1

r
∂r +

1

r2

)
ψ̃ = ω. (33)

Taking the infinite dimensional limit of this stream function
yields: Taking the formal limit k → +∞, we obtain the
equations

ω = −1

r
∂rψ̃ +

1

r2
ψ̃ (34)

= −∂r

(
ψ̃

r

)
. (35)
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The infinite dimensional vorticity equation

Taking the infinite-dimensional limit of the vorticity
evolution equation gives us

∂tω − ψ̃

r
∂zω − ω∂z

(
ψ̃

r

)
= 0. (36)

Making the substitution ϕ = ψ̃
r , we obtain the

infinite-dimensional vorticity equation.

∂tω + ϕ∂zω + ω∂zϕ = 0 (37)
∂rϕ = ω. (38)

This equation exhibits finite-time blowup for a very wide
range of data, and this blowup is of a Burgers shock type.

Evan Miller
On the regularity of axisymmetric, swirl-free solutions of the Euler equation in four and higher dimensions
19 / 22



Relationship with the 1D Burgers equation

In fact, ω is a solution of the infinite-dimensional vorticity
equation if and only if ϕ is a solution to 1D Burgers,

∂tϕ+ ϕ∂zϕ = 0. (39)

This is straightforward to prove. Suppose

∂tϕ+ ϕ∂zϕ = 0. (40)

Then we can see that

∂tω + ϕ∂zω + ω∂zϕ = ∂t∂rϕ+ ϕ∂z∂rϕ+ ∂rϕ∂zϕ (41)
= ∂r (∂tϕ+ ϕ∂zϕ) (42)
= 0. (43)
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Blowup result for the infinite-dimensional vorticity
equation

Theorem

For all initial data ω0, there exists a unique strong solution ω to
the infinite-dimensional vorticity equation. If ∂zϕ0(r, z) ≥ 0 for
all r ∈ R+, z ∈ R, then there is a global smooth solution.
Otherwise, there is finite-time blowup with

Tmax =
1

− infr∈R+

z∈R
∂zϕ0(r, z)

. (44)

This solution of the infinite-dimensional vorticity equation is
given by

ω(r, z, t) =
ω0(r, h(r, z, t))

1 + t∂yϕ0(r, h(r, z, t))
, (45)

where h(r, z, t) is the back-to-labels map.
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Growth Ideas

Theorem
Suppose u is an axisymmetric, swirl free solution of the Euler
equation on Rd, d ≥ 3. Suppose that ω(r,−z) = −ω(r, z) and for
all z > 0, ω(r, z) ≥ 0. Then

d

dt

∫ ∞

0

∫ ∞

0
ω(r, z, t) dr dz = 0 (46)

d

dt

∫ ∞

0

∫ ∞

0
rd−1ω(r, z, t) dr dz ≥ 0 (47)

d

dt

∫ ∞

0

∫ ∞

0
zω(r, z, t) dr dz ≤ 0. (48)

Iftime, Sideris, and Gamblin (1999) used similar arguments
when d = 2, as did Choi and Jeong (2021) when d = 3.
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