2208 L7

Repeated Roots Consider ay"+by + cy = 0 with b²-2ac = 0; i.e. $r = -\frac{b}{za}$ is the only root of $ar^2 + br + c = 0$ Of course, y= ert is a solution of the eqn. But, we don't have a second. We GUESS that y2(+) = V(+)e^{rt} for some nice function vers. Then, · y'2 = v'ert + rvert • $y_2'' = \gamma'e_{+2}rvert + r^2vert$ Putting these in our equation and collecting terms, $ay_{2}'' + by_{2} + Cy_{2} = v(ar^{2} + br + e)e^{rt} = 0!$ + $(av'' + (2ar + b)v')e^{rt}$ $= av^{"ert}$ Since 2ar+b=-b+b=0. So, y2= vert is a solp if $\Lambda_{u} = 0$ i.e. V(+) = At+B for some A,B. For simplicity, choose V(+)=t.

This gives us two solutions of our equation

$$y_1 = e^{rt}$$
, $y_2 = te^{rt}$.
Checking $W(e^{rt}, te^{rt})$
 $= det(e^{rt} te^{rt})$
 $= e^{2rt}, rte^{2rt} - tre^{2rt}$
 $= e^{2rt} = to$ for any teR .
i.e. y_1, y_2 form a FSS for an eqn $!$
Coing back to our Spring.
 $my'' + xy' + ky = 0$
The discriminant of the Ch. Puly² is
 $x^2 - 4mk = (x - 2\sqrt{mk})(x + 2mk)$
Since $x_1m, k \ge 0$, there is one value of x
 $s.t. x^2 - 4mk = 0$; $y = Ae^{r_1t} + Be^{r_2t}$
B $x^2 - 4mk = 0$; $y = Ae^{r_1t} + Bte^{-xt}$

(a)
$$\gamma^{2} - 4mk < 0$$
 : $y = (Acce(\mu +) + BSIN(\mu +))e^{-\frac{1}{2m}}$
 $ulcue \mu^{2} = \frac{44m - v^{2}}{2m}$
(a)
(b): $\Gamma_{b} = -\frac{3}{2} \pm \sqrt{y^{2} - 4mk}$
Since $\gamma_{im} k > 0$, $\gamma^{2} - 4mk < \gamma^{2}$ so
 $\sqrt{y^{2} - 4mk} < \sqrt{y^{2}} = 3$
We see $\Gamma_{i,1} \Gamma_{2} < 0$.
i.e. $\lim_{k \to \infty} y(t) = 0$ and there is no excellation.
(b) $y(t) = (A + Bt)e^{-\frac{2}{2m}t} \longrightarrow 0$ as $t \to \infty$ by
 f theorem by
no excellation but might eversheat
(c) Since $|y(t)| = (|A|| + |B|)e^{-\frac{\pi}{2n}t}$ we see
 $y(t) \to 0$ as $t \to \infty$. Us of excellation!
• Undemped, free excellation
 $\gamma = 0$
• Demped Oscillations
 $0 < \gamma < 2\sqrt{km}$
• Critically Demped
 $\gamma = 2\sqrt{km}$

Current in the circuit is I(+) massing in Amps.

The Charge on the Capacitor at time t is Q(t) C(coulombs) $(*) I(t) = \frac{dQ}{dt}$

Using Kirchhoff's Low: THE Impressed Voltage is equal to the sum of Voltage drops in the rest of the circuit.

THE Drops: RESISTOR is RI4)
· Capacitor is Q
· Inductor is
$$L \frac{dI}{dt}$$

So, $RI + Q + L \frac{dI}{dt} = E(t)$

OR in Q: $LQ'' + RQ' + \frac{1}{C}Q = E(4)$ Initial Conditions: $Q(4_0) = Q_a$; Initial Charge on cap. $Q'(4_0) = Q_i$; Initial Current

clifferentiating again:

$$L \frac{d^{2}}{dt^{2}} \left(\frac{d}{dt} Q \right) + R \frac{d}{dt} \left(\frac{d}{dt} Q \right) + \frac{L}{C} \frac{d}{dt} Q = E(t)$$
OR $LI'' + RI' + \frac{L}{C}I = E(t)$.
Initial Conditions

$$I(t_{0}) = I_{0} \quad j \quad I'(t_{0}) = I,$$
Initial Conditions

$$I(t_{0}) = I_{0} \quad j \quad I'(t_{0}) = I,$$
Initial Content harder to measure
go back to measure
go back to measure
I = I'(t_{0}) = E(t_{0}) - \frac{Q(t_{0})}{C} - RI_{0}
L
We see in these applications, external forces or
voltages give rise to Inhomogeneous equations of the
form

$$Ay'' + by' + Cy = F(t_{0})$$
Magnet not 0!
Suppose now we fund a solution w. Shen, given
ay'' + by' + Cy = D
we find $y(t_{0}) = Z(t_{0}) + W(t_{0})$, this also satisfies

F

Solution"
$$y_p of \int ay"+by'+cy = F$$

- 3. Then, $y(t) = y_H(t) + y_p(t)$ is the general solution of an original problem.
- We know how to do 1! Next time, the method of Undet. Coeffs.