Seppabsie Equations
So for: $y^{\prime}+B(t) y=D(t)$
next, we consisder a special class of possibly non-linear equations

- $y^{\prime}=f(t, y)=\psi(t) \varphi(y)$ the variables ane for $t \in[a, b]$ separated
Solution. Rewrite as

$$
\frac{1}{\varphi(y)} \frac{d y}{d t}=\psi(t)
$$

If $\frac{d}{d s} Q(s)=\frac{1}{\varphi(s)}$ then our equation becomes

$$
\frac{d}{d t}[Q(y)]=\psi(t)
$$

So, integrating we find

$$
\begin{gathered}
Q(y)=\int_{a}^{t} \psi(s) d s+c \\
\longrightarrow y(t)=Q^{-1}\left[\int_{a}^{t} \psi(s) d s+c\right] \\
\frac{E_{x}}{2} y^{\prime}=k y(q-y) \\
\cdot \frac{1}{y(q-y)} y^{\prime}=k \quad(0<y<q)
\end{gathered}
$$

$$
\begin{gathered}
\text { i.e. }\left[\frac{1}{q-y}+\frac{1}{y}\right] d y=q k \\
\text { i.e. }-\ln \frac{1}{q-y}+\ln y=q k t+c \\
\text { i.e. } \ln \frac{y}{q-y}=q k t+c \\
\longrightarrow \frac{y}{9-y}=A e^{q k t} \\
\square=\frac{q A e^{q k t}}{1+A e^{q k t}} \text { laix }
\end{gathered}
$$

this is a 1-pasameter family of solutions

Ex: Find a soln of

$$
\frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}}
$$

that pusses through $(0,1)$.
Soln: $\left(4+y^{3}\right) d y=\left(4 x-x^{3}\right) d x$

$$
A=\frac{x_{k}^{p}}{1-w_{4}^{p}}
$$

$$
\longrightarrow 4 y+\frac{1}{4} y^{4}=2 x^{2} * \frac{1}{4} x^{4}+C
$$

i.e. $y^{4}+16 y+x^{4}-8 x^{2}=C$

Notice, $(0,1)$ is on this tocus if $x=0 \& C=17$.
plot some pics.

Ideas on drawing pics.

- Phase Plane: $(t, y(t))$
* vectorfield lines

$$
y^{\prime}=f(t, y) \text { - Given }(t, y), f(t, y) \in \mathbb{R} \text { and }
$$

gives the slope of our son
Ex: $y^{\prime}=\frac{y}{(x-1)^{2}} \quad \cdot \ln (y)=\frac{-1}{x-1}+C$

$$
y=C e^{-\frac{1}{x-1}}
$$ fa any $C \in \mathbb{R}$.

Ex: A Mixing problem. at $t=0, Q_{0}$ 怆 of self in teach. sadtwabs at $\frac{1}{4} \mathrm{~kg} / \mathrm{min}$ entices a mixing tam and flows out at $r L /$ min

- the ivf fa this system:

Rate of change of salt in tank:

- $Q(t)$: kg of suet at time t mins
- $Q^{\prime}(t)=$ Rabin - Rate out

$$
=\frac{r}{4}-\frac{r Q}{100}
$$

ie. $Q^{\prime}(t)+\frac{r Q}{100}=\frac{r}{4}$

$$
Q(0)=Q_{0}
$$

$$
\begin{aligned}
\mu(t)= & \exp \left(\frac{r t}{100}\right) \\
Q(t) & =e^{-\frac{r t}{100}} \int \frac{r}{4} e^{+\frac{r t}{100}} d t \\
& =\frac{r}{4} e^{-r t_{100}} \cdot\left[\left(\frac{r 100}{r}\right) e^{+r t / 100}+c\right] \\
& =25+25 r e^{-r t / 000}
\end{aligned}
$$

Non-Liner Vs. Liners.

- We proved existence of solutions to

$$
y^{\prime}+B(t) y=D
$$

and uniquess of the geneal sole.
Mae, given ave initial condition

Say $y\left(t_{0}\right)=Y_{0}$, then there is exactly
1 solution of the problem.

Mon-linear Equations are not so simple!

Consider now $y^{\prime}=f(f, y)$ where $\alpha<t<\beta, \gamma<y<\delta$ contains the point $\left(t_{0}, y_{0}\right)$

- If $f(t, y) \in \frac{\partial f}{\partial y}(t, y)$ ace continuous on R then there is a solution $y(t)$ of the problem

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array} \quad \text { fa } t \in\left(t_{0}-h, t_{0}+h\right)\right.
$$

Ex: If $y^{\prime}+B y=D$ then $y^{\prime}=f(t y)=D-B y$
So, $\frac{\partial f}{\partial y}=-B$. Since B,Dare cont, our hypotheses are satisfied.

Ex: $\quad \begin{aligned} & y^{\prime}=y^{2} \\ & y(0)=1\end{aligned}$
Separable! $-\frac{1}{y}=t+c$

$$
\begin{gathered}
\rightarrow y=-\frac{1}{t+c} ; \quad y(0)=-\frac{1}{c}=1 \\
\rightarrow c=-1 .
\end{gathered}
$$

So $y(t)=-\frac{1}{t-1}=\frac{1}{1-t}$.

- $y^{\prime}(t)=\frac{1}{\left(1-t^{2}\right)}=y^{2}$ and $y(0)=1$. So y es this is a sol. But... at $t=1, y=\infty$ so, the sold does not persist fur cell time! THis obstacle not obi what not obvious in the problem!

$$
\begin{aligned}
& \text { Ex }
\end{aligned}\left\{\begin{array}{l}
t y^{\prime}+2 y=4 t^{2} \\
y(1)=2
\end{array} \longrightarrow \begin{array}{l}
y^{\prime}=4 t-\frac{2}{t} y \\
y(1)=2 .
\end{array}\right.
$$

Both are continuas away from $t=0$. For example

$$
(1,2) \in R=\left(\frac{1}{2}, \frac{3}{2}\right) \times\left(\frac{3}{2}, \frac{5}{2}\right)
$$

$5 / 2-1,2$
2
$3 / 2-1$,
0

So, by our theorem, as $f(t, y)$ and $f_{y}(t, y)$ all cont on R, there is a unique sol to the problem!

$$
\begin{aligned}
& 0 y^{\prime}+\frac{\partial}{t} y=4 t \\
& \mu(t)=\exp (2 \ln (t))=\exp \left(\ln \left(t^{2}\right)\right) \\
&=t^{2} \\
& y(t)=\frac{1}{t^{2}}\left[\int 4 t^{3} d t+c\right] \\
&=\frac{1}{t^{2}}\left[t^{4}+c\right] \\
&=t^{2}+\frac{c}{t^{2}} \quad \operatorname{Pn} \quad y(1)=1+c=2 \\
& \rightarrow c=1
\end{aligned}
$$

So $y(t)=t^{2}+\frac{1}{t^{2}}$. *issue at $t=0$!

Solution Method 3: Exact Equations.

A special example: $\quad . y(1)=0$
(*) $2 x+y^{2}+2 x y y^{\prime}=0$.
This is a non-linear separable en.
But: If we set

$$
\psi(x, y)=x^{2}+x y^{2}
$$

Then, $\psi_{x}=2 x+y^{2}, \psi_{y}=\partial x y$. So, om eq is $\quad \psi_{x}+\psi_{y} y^{\prime}=0$.

But we can rewrite this as

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial y}{\partial x}=0 \\
& \text { i.e. } \frac{d}{d x} \psi(x, y)=0
\end{aligned}
$$

and so $\psi(x, y)=C$ implicitly defines
solutions of (*). Since $y(1)=0$
we find $\psi(1,0)=1$ giving $c=1$.
Orrsoction is given by

$$
\begin{array}{r}
x^{2}+x y^{2}=1 \\
\left(y=\sqrt{\frac{1-x^{2}}{x}}\right)^{2}
\end{array}
$$

This is a special example of an exact equation.

- Fix $\left(x_{0}, y_{0}\right)$ and let M, N be continuous in a rectangle containing $\left(x_{0}, y_{0}\right)$. Cen equation

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{*}
\end{equation*}
$$

is exact if

$$
M_{y}=N_{x} \quad \text { in } R
$$

$$
\text { a } 4 \text { sit. }
$$

$$
\psi_{x}=M, \psi_{y}=N
$$

- The solution of $*$ is given implicitly by

$$
\psi(x, y)=c
$$

$$
\varepsilon_{x}:\left(y \cos (x)+2 x e^{y}\right)+\left(\sin (x)+x^{2} e^{y}-1\right) y^{\prime}=0
$$

Find all sol's:

$$
\begin{array}{ll}
M=y \cos (x)+2 x e y ; & M_{y}=\cos (x)+2 x e^{y} \\
N=\sin (x)+x^{2} e^{y}-1 ; & N_{x}=\cos (x)+2 x e y
\end{array}
$$

Since $\psi_{x}=M$,

$$
\begin{aligned}
& \psi(x, y)=y \sin (x)+x^{2} e^{y}+C(y) \\
& \psi y=\sin (x)+x^{2} e^{y}+C^{\prime}(y)=\sin (x)+x^{2} e^{y}-1=N
\end{aligned}
$$

So, $C^{\prime}(y)=-1 \rightarrow C(y)=-y$ and we find

$$
\psi(x, y)=y \sin (x)+x^{2} e^{y}-y
$$

and solutions of our eq" ace given by

$$
\psi(x, y)=C \text { for a constant } c \in \mathbb{R}
$$

Ex: Every separable eq n is exact.

$$
\text { - } y^{\prime}=\psi(x) \varphi(y)
$$

So, $\frac{1}{\phi(y)} y^{\prime}-\psi(x)=0$ ae septs exact.
ie. set $M=-\psi(x), N=\frac{1}{\varphi(y)}$.
Now $M_{y}=0=N_{x}$! it's exact!'
not every eq n is exact. But, sometimes, we con find an integrating factor $\mu(x, y)$ st.

$$
M(x, y)+N(x, y) y^{\prime}=0 \quad \mu(x, y) M(x, y)+\mu(x, y) N(x, y) y^{\prime}=0
$$

Inexact Exact.

$$
\rightarrow \text { ie. }(\mu M)_{y}=(\mu N I)_{x}
$$

$$
\text { i.e. } \mu_{y} M-\mu_{x} N=\mu\left(N_{x}-M_{y}\right)
$$

$$
\mu=\mu(x)
$$

$$
\mu^{\prime}=\mu \frac{\left(M_{y}-N_{x}\right)}{N}
$$

$$
\mu^{\prime}=\frac{\mu\left(N_{x}-M_{y}\right)}{M}
$$

- if $\frac{M_{y}-N_{x}}{N}$ is a function of x only, proceed.
- if $\frac{N_{x}-M_{y}}{M}$ is a function of y only, proceed

THESE are Separable Equations and easy to solve.

$$
\text { Ex: } y+\left(2 x y-e^{-2 y}\right) y^{\prime}=0
$$

$$
\begin{array}{ll}
M=y & M_{y}=1 \\
N=2 x y-e^{-2 y} & N_{x}=2 y
\end{array}
$$

But: : $\frac{M_{y}-N_{x}}{N}=\frac{1-2 y}{\left.2 x_{j}-e^{-2}\right)}$ depends on y !

- $\frac{N_{x}-M_{y}}{M}=\frac{2 y-1}{y}=2-\frac{1}{y}$ depends only

There is an integrating factor $\mu=\mu(y)$ satisfying

$$
\begin{aligned}
& \quad \mu^{\prime}=\mu\left(2-\frac{1}{y}\right) \\
& \text { i.e. } \ln \mu=2 y-\ln (y) \\
& \text { so } \mu=e^{2 y} \cdot e^{-\ln (y)}=\frac{1}{y} e^{2 y}
\end{aligned}
$$

Multiplying our eq n by $\mu_{\text {, }}$

$$
\begin{aligned}
& \quad e^{2 y}+\left(2 x e^{2 y}-\frac{1}{y}\right) y^{\prime}=0 \\
& \tilde{M}=e^{2 y} \quad \tilde{M}_{y}=2 e^{2 y} \\
& \tilde{N}=2 x e^{2 y}-\frac{1}{y} \quad \tilde{N}_{x}=2 e^{2 y} \quad \text { it's exact. }
\end{aligned}
$$

$$
\text { - } \begin{aligned}
\psi_{x}=e^{2 y} & \rightarrow \psi=x e^{2 y}+c(y) \\
\rightarrow \psi_{y} & =2 x e^{2 y}+c^{\prime}(y) \\
& =2 x e^{2 y}-\frac{1}{y} \\
& \rightarrow c^{\prime}(y)=-\frac{1}{y} \rightarrow c(y)=\ln (y)
\end{aligned}
$$

$$
\text { So } \psi(x, y)=x e^{2 y}+\ln (y)
$$

and our solutions are given by

$$
x e^{2 y}+\ln (y)=C_{1} \quad \ln \text { constants } C_{1} \text {. }
$$

