2208 facture 7.
Repeated Real Roots:
Ex: Find the sol of

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y^{\prime \prime}+4 y=0 \\
y(0)=1, y^{\prime}(0)=2
\end{array}\right.
$$

Soln. On characteristic poly= is $r^{2}+4 r+4=(r+2)^{2}=0$
So, $r=-2$ is the coly root. This gives 1 sol ${ }^{n}$

$$
y_{1}(t)=e^{-2 t}
$$

Where can we find a second son?
Notice: Set $y_{2}(t)=t e^{-2 t}$

$$
\begin{aligned}
y_{2}^{\prime}(t) & =e^{-2 t}-2 t e^{-2 t} \\
y_{2}^{\prime \prime}(t) & =-2 e^{-2 t}-2 e^{-2 t}+4 t e^{-2 t} \\
& =-4 e^{-2 t}+4 t e^{-2 t}
\end{aligned}
$$

THEN: $y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}$

$$
\begin{gathered}
=-4 e^{-2 t}+4+e^{2 t}+4 e^{-2 t}-8 t e^{-2 t}+4 t e^{-2 t} \\
=0 \\
\quad y_{1}(t)=e^{-2 t}, y_{2}(t)=t e^{-2 t}
\end{gathered}
$$

$$
\begin{gathered}
\text { So, } W\left(y_{1}, y_{2}\right)=\operatorname{det}\left|\begin{array}{ll}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right| \\
=e^{-4 t}-2 t e^{-4 t}+2 t e^{-4 t} \\
=e^{-4 t} \neq 0 \text { for any } t \in \mathbb{R} .
\end{gathered}
$$

So, y_{1}, y_{2} form an FFS.
Ore Sol is them

$$
\begin{aligned}
y(t)= & A e^{-2 t}+B t e^{-2 t} \\
y(0)= & A+B=1 \rightarrow B=1-A \\
y^{\prime}(0)= & -2 A+B=2 \rightarrow B=2+2 A \\
& \text { ie. } 1-A=2+2 A \\
& \rightarrow A=-1 \\
& \rightarrow B=-1 / 3 \cdot B=4 / 3
\end{aligned}
$$

So $y(t)=-\frac{1}{3} e^{-2 t}+\frac{4}{3} t e^{-2 t}$.
Preen: Let $a, b, c \in \mathbb{R}$ St $a r^{2}+b r+c=0$

$$
\Leftrightarrow(r-s)^{2}=0
$$

Shan, the IVD

$$
\left\{\begin{array}{l}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y\left(t d=y, y^{\prime}(t)=y_{1}\right.
\end{array}\right.
$$

has solve
$y=A e^{s t}+B t e^{s t}$ for constants $A_{1} B d$ be oleterminod.

Example: a spring-mass system

* $U(t)$ measures displacement of m at time t from equilibrium.

The forces acting on our mass At Equilibrium.

$$
\left\{\begin{array}{l}
F_{S}=-k L \quad \begin{array}{l}
\text { The sestrative force. } \\
m
\end{array} \\
w=m g \text { gravity pulls down and we } \\
\text { will wee downed as the } \\
\text { positive displacement direction }
\end{array}\right.
$$

Sine there are no other forces, we have

$$
\begin{aligned}
m g-k L & =0 \\
\text { i.e. } k & =\frac{m g}{L} ; g=9.8 \mathrm{~m} / \mathrm{s}^{\circ} .
\end{aligned}
$$

Forces acting in the non-equolibrium state.

Damping: $F_{d}=-\gamma v^{\prime}(t)$ acting in the opposite direction of velocity.
External Fores: $F(t)$ acts ally down ward a upward.
Newton's Law: $F=m a$
ie. $\quad \begin{array}{r}m u^{\prime \prime}=m g-k(L+v)-\gamma v^{\prime}+F(t) \\ =0\end{array}$

$$
=m g-k L-k v-\gamma v^{\circ}+F
$$

ie. $m u^{\prime \prime}+\gamma u^{\prime}+k u=F$. So, $u(t)$ must satisfy this second order problem.
if the external force $F(t) \neq 0$, this is an in-trongeneous eqn. More on this later!

- Suppose a 10 kg weight hangs from a spring with length 5 m . When the weight is attacked, the spring extends to 5.5 m . Assuming zero friction and that the mass begins at $U(0)=1 \mathrm{~m}$, Find $U(t)$, the function governing the displacement of
the mass past eq?.

$$
k=\frac{m g}{L}=\frac{10.9 .8}{1 / 2}=\frac{98}{2}=49
$$

The equation satisfied by $U(t)$ is

$$
\begin{aligned}
& 10 v^{\prime \prime}+490=0 \\
& \rightarrow v^{\prime \prime}+\frac{49 u}{10}=0 \quad \cdot r^{2}+\frac{49}{10}=0 \\
& \text { ide. } r= \pm \frac{7}{\sqrt{10}} i \\
& \text { ide. } y(t)=A e^{i \frac{7}{10} t}+B e^{-\frac{7}{3} t} t i \\
& =\bar{A} \sin \left(\frac{7}{\sqrt{10}} t\right)+\bar{B} \cos \left(\frac{7}{\sqrt{10}} t\right) \\
& y(0)=1=\bar{B} \\
& y^{\prime}(0)=\frac{7}{\sqrt{10}} \bar{A}=0 . \\
& \text { So, } y(t)=\cos \left(\frac{7}{\sqrt{10}} t\right)
\end{aligned}
$$

Suppose now, the spring is dempeel with constant $\gamma=-1 / 2$.
Then, $10 u^{\prime \prime}+\frac{1}{2} u^{\prime}+49 u=0, v(0)=1, u^{\prime}(0)=0$.

$$
\begin{aligned}
& 10 r^{2}+\frac{1}{2} r+49=0 \\
& \text { i.e. } r^{2}+\frac{1}{20} r+\frac{49}{10}=0 \\
& \text { i.e. } r=-\frac{1}{40} \pm \frac{1}{2} \cdot \sqrt{\frac{1}{400}-\frac{4 \cdot 49}{10}} \\
& =-\frac{1}{40} \pm \frac{1}{40} \sqrt{1959} i
\end{aligned}
$$

$$
\text { So } u(t)=e^{-\frac{1}{40} t}\left[A \sin \left(\frac{\sqrt{1999}}{40} t\right)+B \cos \left(\frac{\sqrt{1995}}{40} t\right)\right]
$$

$$
\begin{aligned}
& U(0)=B=1 \\
& U^{\prime}(0)=\frac{\sqrt{195}}{10} A=O \rightarrow A=0 .
\end{aligned}
$$

So $u(t)=e^{-\frac{1}{40} t} \cos \left(\frac{\sqrt{1899}}{40} t\right)$

See Crnimations

