2208 Lecture G

Recall, so for, given 2 solutions y, y2 of () y'' + p(+)y' + q(+)y = 0and we also know y(+) = Ay, (+) + By2(+) is also a solo. To find A, B we make use of initial conditions · ((4) = 4, , 4(4) = 42. Is it always possible to find A, BER S.t. 4 satisfier () and @? · y(t) = A y(t) + B y2(t) = y0 $\cdot g'(t_{0}) = |Ag'_{1}(t_{0}) + Bg'_{2}(t_{0}) = g_{1}$

So, $A = \begin{vmatrix} 3_{0} & y_{2}(4_{0}) \\ y_{1}(4_{0}) & y_{2}(4_{0}) \end{vmatrix}$, $B = \begin{vmatrix} y_{1}(4_{0}) & y_{0} \\ y_{1}(4_{0}) & y_{2}(4_{0}) \end{vmatrix}$, $B = \begin{vmatrix} y_{1}(4_{0}) & y_{0} \\ y_{1}(4_{0}) & y_{2}(4_{0}) \end{vmatrix}$

and these are real #'s provided

 (Γ)

Theorem: Suppose
$$g_{1}, g_{2}$$
 so tropy
(E) $g'' + pchy' + qchy = 0$.
Then, given any to, we may find a
Sol² $q'(x)$ in the form $y = Ay_{1} + By_{2}$
iff $W(y_{1}, y_{2}) = clet(Si S_{1} Y_{2}) \neq 0$.
Ex: From least time, we found
 $g'' + 3y' + 2y = 0$, teR.
has solutions $y_{1} = e^{-t}, y_{2} = e^{-2t}$. Notice,
 $W(y_{1}, y_{2}) = clet(e^{-t} e^{-2t})$
 $= -2e^{3t} + e^{-3t}$
 $= -e^{-3t} \neq 0$ for any $t \in \mathbb{R}$.

(2)

So, no matter to, yo, there is a sol²

$$y = Ae^{-t} + Be^{2t}$$
 satisfying $y(t_0) = y_0, y'(t_0) = y_0$.
Deff: Given $\frac{4}{3}y'' + pany' + qany = 0$ with
Pr9 continuous on $I = (a,b)$, we say two solutions
 y_1, y_2 form a Fondoriental Sol² set if
 $W(y_1, y_2) \neq 0$ for all the I.
Theorem: Given the same eq. but y_1 satisfy
 $y'' + p(t_1)y' + y = 0$
 $y(t_0) = 1, y'(t_0) = 0$
and y_2 satisfy
 $y'' + p(t_1)y' + q(t_1)y = 0$
 $y(t_0) = 0, y'(t_0) = 1$.
Then, $y_1 \notin y_2 = 0$ is to = 0. Find an FSS.

- Solⁿ: Ch. Eq² is $\Gamma^2 = I \rightarrow \Gamma = \pm I$. So et and et and the most
 - general form of a sol is

$$y = Ae^{-t} + Be^{t}.$$

$$\frac{\ln h a C (ancli h a s)}{(ancli h a s)}$$

$$y(a) = 1, y'(a) = 0 \rightarrow A + B = 1 \qquad B = \frac{1}{2}, A = \frac{1}{2}.$$

$$y(a) = 0, y'(a) = 1 \rightarrow A + B = 0 \qquad B = \frac{1}{2}, A = -\frac{1}{2}.$$

$$y(a) = 0, y'(a) = 1 \rightarrow A + B = 0 \qquad B = \frac{1}{2}, A = -\frac{1}{2}.$$

$$Set \quad y_1(t) = \frac{1}{2} (e^{-t} + e^{t}) = \cosh(t)$$

$$y_2(t) = -\frac{1}{2} (e^{-t} - e^{-t}) = \sinh(t)$$

$$\cdot W (ash(t), \sinh(t)) = det \left(\cosh(t) \quad \sinh(t) \right)$$

$$= \cosh^2(t) - \sinh^2(t)$$

$$= 1 + 0.$$

$$So, every \quad Sol^{2} \quad op \quad y'' - y = 0 \quad \text{Maxy be withen}$$

$$es \qquad y(t) = c_1 \cosh(t) + c_2 \sinh(t)$$

Complex Poots of the (h. Poly²:
Euler's Formula:
For any
$$\Theta \in \mathbb{R}$$
, $[i^2 = -1]$
 $e^{i\Theta} = (OS(O)) + iSIN(O)$
 $e^{-i\Theta} = COS(O) - iSIN(O)$
 $\cdot (OS(O)) = e^{i\Theta} + e^{-i\Theta}$, $SIN(O) = e^{i\Theta} - e^{-i\Theta}$
 Z_i
To see also, recall, for any t,
 $e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$
 $= 1 + it - \frac{t^2}{3!} - \frac{it^3}{4!} + \frac{it^5}{5!} + \frac{t^6}{5!} + \frac{it^5}{5!} + \frac{it^6}{2!} + \frac{it^6}{5!} + \frac{it^6}{5!} + \frac{it^6}{2!} + \frac{it^6}{5!} + \frac{it^$

Sup The ch. pdgs is
$$\Gamma^{2}+I = 0$$
 with
Solutions $\Gamma_{i} = i$, $\Gamma_{2} = -i$.
Our Solutions are
 $y_{1}(+) = e^{it}$
 $y_{2}(+) = e^{it}$ $y_{2}(+) = Ae^{it} + Be^{-it}$
Do $y_{1}y_{2}$ form an FSS?
 $W(e^{it} e^{-it}) = det \begin{pmatrix} e^{it} e^{-it} \\ ie^{it} - ie^{it} \end{pmatrix}$
 $= -i - i = -2i \neq 0$
yeas!
 $y(0) = A + B = I \rightarrow A = I - B$
 $y'(0) = iA - iB \rightarrow B = I - B$
 $= i(A - B) = 0 \rightarrow A = B \rightarrow B = b_{2}$
 $A = b_{2}$
So, $y(t) = \frac{1}{a} (e^{it} + e^{-it})$
 $= cos(t)$.
Thus: wet a,b,c e R st. as² + bric = 0 has
 $\Gamma_{i} = a + ib$
 $\Gamma_{i} = a + ib$
 $\Gamma_{i} = a + ib$

$$\begin{cases} ay''+by'+cy=0 \\ y(t)=y_0 \\ y'(t)+y_1 \end{cases}$$
has the unique sol²:
* $y(t) = e^{at} (Acos(bt) + Bsin(bt))$
ulue A_1B are found through linear
algebra.
To see uly, we just re-express $e^{(a+ib)t}$
• $e^{(a+ib)t} = e^{at} e^{ibt}$
= $e^{at} (cos(bt) + isin(bt))$
• $e^{a-ibt} = e^{at} (cos(bt) - isin(bt))$
So, $Ae^{(a+ib)t} + Be^{a-ibt} = e^{at} (Acos(t) + Bsin(bt))$
* Notice, $y_1(t) - e^{at}cos(bt)$, $y_2(t) = e^{at}sin(bt)$
det $\begin{bmatrix} y_1 & y_2 \\ y_1 & y_2 \end{bmatrix} = e^{at} det \begin{bmatrix} cos(bt - sin(bt) - sin(bt) \\ -bsin(bt) \end{bmatrix} = b = b = b$

= be^{at} . Since $b \neq 0$, $W(y_1, y_2) \neq 0$ for any $t, a \in \mathbb{R}$. i.e. y_1, y_2 -form an FFS for the problem.