2208 Lecture 4 alton. (pages 8-12 of lest boon Post)
Wee have seen methods for solving

- Linear: $\begin{aligned} y^{\prime}+B(t) y & =D(t) \\ y(1) & =y_{0}\end{aligned}$
- Separable: $\quad \begin{aligned} & \prime \\ &=\varphi(t) \psi(y) \\ & y\left(t_{0}\right)=y_{0}\end{aligned}$
and. Exact Equations: $M(x, y)+N(x, y) y^{\prime}=0$ where $M_{y}=N_{x}$.
Lemma: Every linear equation with continuous coplicients
Lemma: Every linear equation has con everest integrating foetor.
Proof: Jon functions $B(x), D(x)$ consider

$$
y^{\prime}+B(x) y=D(x)
$$

Multiplying by $\mu=\exp \int B(*) d t$ gives

$$
\frac{d}{d x}(\mu y)=\mu D
$$

Set $w=\mu y$ and we find the new eq n

$$
\omega^{\prime}=\mu D .
$$

This is in the form

$$
M(x, \omega)+N(x, \omega) \omega^{\prime}=0
$$

selene $M=-\mu D, N=1$.

$$
M_{y}=0=N_{x} \text { so it is exact! }
$$

$$
\begin{aligned}
\psi_{w}=N \rightarrow \psi(x, w) & =w+C(x) \\
\psi_{x} & =C^{\prime}(x)=-\mu D
\end{aligned}
$$

So, $C(x)=-\int_{t_{0}}^{t} \mu D d s+C$ for some $C \in \mathbb{R}$.
Or Solutions are then given implicitly by

$$
w-\int_{t_{0}}^{t} \mu(s) D(s) d s=c \text { for } c \in \mathbb{R} \text {. }
$$

$$
\text { i.e. } y=\frac{1}{\mu}\left[\int_{t_{0}}^{t} \mu(\sin D(s) d s+C]\right.
$$

the same Solution!!

Lemma: Every Sepreable equation is exact.

$$
\begin{gathered}
y^{\prime}=\varphi(t) \psi(y) \\
\rightarrow-\varphi(t)+\frac{1}{\psi(y)} y^{\prime}=0
\end{gathered}
$$

This equation is $M(t, y)+N(t, y) y^{\prime}=0$ with $M=-\varphi(t), N=\frac{1}{\psi(y)}$,

So, $M_{y}=0=N_{t}$ and we find one eq n

Second Order Linear Equations
General Form: The Second order linear Ivf:
(11) $\left\{\begin{array}{l}y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \text { for } t \in(a, b) \\ y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \text { fr some } t_{0}(a, b)\end{array}\right.$
there are two for second oder en's.
Do Solutions Exist, au t they Unique?
THE: $(3,2.1)$ If $p, 9, g$ ace continuous functions on $(a, b)$ then, there is a unique sol to (*) valid fr all time in $(a, b)$.
Ex: Find the longest time interval on uluch a Sol $^{n}$ of

$$
\left\{\begin{array}{c}
(1-t)^{2} y^{\prime \prime}+2 t y^{\prime}-\frac{1}{t} y=0 \\
y(3 / 4)=2, y^{\prime}(3 / 4)=3 .
\end{array}\right.
$$

exists.

Soln: Ore eq is

$$
y^{\prime \prime}+\frac{\partial t}{(1-t)^{2}} y^{\prime}-\frac{1}{t(t-1)} y=0
$$

Here $p(t)=\frac{2 t}{1-t^{2}}, \quad q(t)=\frac{1}{t(t-1)}$
and $g(t)=0$.
Since $P$ iq are both cont. on $(0,1)$ with discontinuity fo $g$ at $t=0$ and $t=1$ and $P$ discont. at $t=1$, the longest interval we can be guaranteed $a$ Solution is, by auer theorem, $t \in(0,1)$.

Ex: Consider $\begin{cases}y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 & \text { with } p, q \\ y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=0 . & \text { cent, in } l a, b) .\end{cases}$
Cleculy $y(t)=0$ is a sol of this problem. By our theorem, pi are cont with $g(t)=0$, and so the sorn of our problem is unique.

These, $y(t)=0$ is the ONLY sol of this problem.

Resolution of the eq" with constr coefficients.

- $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Eüler: Suppose $y=e^{r t}$ for some $\in \mathbb{R}$. Then,

$$
\begin{aligned}
y & =e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t} \\
a y^{\prime \prime}+b y^{\prime}+c y & =\left(a r^{2}+b r+c\right) e^{r t}
\end{aligned}
$$

Since $e^{r t} \neq$, owe eq is satisfied only if

$$
\begin{equation*}
\text { - } a r^{2}+b r+c=0 \tag{*}
\end{equation*}
$$

THS is called the Characteristic Eq? Associated to - THere Are 3Different Coses.to consider.

- Distinct Real Routs.

TH2 soln's of $a r^{2}+b r+c=0$ ace $r=r_{1}, r_{2} \in \mathbb{R}$.
Each of $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ satisfy $\because "$ By linearity, $y=A y_{1}+B y_{2}$ for sonstonts $A, B$ is the most general sol.
Ex: Solve the IVP

$$
y^{\prime \prime}-y=0, \quad y(0)=1, \quad y(1)=2
$$

Sol': One Characteristic eq ${ }^{n}$ is

$$
r^{2}-r=0 \rightarrow r=0,1
$$

Que ore solutions.
So, set $y=A e^{0 \cdot t}+B e^{t}$

$$
\begin{aligned}
& =A+B e^{t} . \quad ; y^{\prime}=B e^{t} \\
y(0)=A+B & =1 \\
y^{\prime}(1)=B \cdot e & =2 \rightarrow B=\frac{2}{e} .
\end{aligned}
$$

Since $A=1-B=\frac{e-2}{e}$, we find

$$
\begin{aligned}
y(t) & =\frac{e-2}{e}+\frac{2}{e} e^{t} \\
& =\frac{1}{e}\left(e-2+2 e^{t}\right)
\end{aligned}
$$

Ex: Solve: $y^{\prime \prime}+3 y^{\prime}+2 y=0$

$$
y(0)=1=y^{\prime}(0)
$$

Sol: $r^{2}+3 r+2=(r+1)(r+2)$
So, on er most general sulu is

$$
y(t)=A e^{-t}+B e^{-2 t}
$$

Pu constants $A, B$.
Since $y(0)=A+B, y^{\prime}(0)=-A-2 B$
we see $B=1-A$ giving $-A-2(1-A)=1$
i.e. $A-2=1 \rightarrow A=3, B=-2$.

Soom soln $屮$

$$
f(t)=e^{-t}-2 e^{-2 t}
$$

