Math 2208 Lecture 1
You have already seen differential equations in action!
i) Newton's Law of coding

$$
U^{\prime}(t)=k\left(U(t)-T_{0}\right)(*)
$$

- $U(t)$ is temperature of the object at time t
- To is the temp. of the surrounding medium.

THE Solution of (*) is a function $U(t)$ shat Satisfies (*). Mae, it gives the temp of an object at any time t.
(1) Consider the en

$$
u^{\prime}(t)=k u(t) .
$$

- Notice that $U(t)=e^{k t}$ solves this eq. Suppose now there is another sol ${ }^{\Omega}$, say $\omega(t)$.

$$
\text { (ie. } \left.\omega \text { satisfies } \omega^{\prime}=k \omega\right)
$$

Then, $\frac{d}{d t}\left(\frac{\omega(t)}{e^{k t}}\right)=\frac{\omega^{\prime}(t) e^{k t}-k \omega(t) e^{k t}}{e^{2 k t}}$

$$
=\frac{\left(\omega^{\prime}(t)-k \omega(t)\right)}{e^{k t}}
$$

$$
=0!
$$

That is, $\frac{W(t)}{e^{R t}}$ is constant, ie. There is a $C \in \mathbb{R}$
S.t. $w(t)=c e^{k t}$.
(2) Set $g(t)=v-T_{0}$. Then $g^{\prime}(t)=v^{\prime}(t)$
and

$$
g^{\prime}(t)=k\left(v-T_{0}\right)=k g(t) .
$$

Thus, by part (1), $g(t)=c e^{k t}$ for some $C \in \mathbb{R}$ and we find

$$
U(t)=g(t)+T_{0}=C e^{k t}+T_{0}
$$

* Their means that every solution of

$$
U^{\prime}(t)=k\left(U(t)-T_{0}\right)
$$

is of the form

$$
u(t)=C e^{k t}+T_{0}
$$

(3) There cen wily mary solutions to our problem.
i.e. $U(-1)=C e^{k t}+T_{0}$ for any $C \in \mathbb{R}$.

To find a single solution, we need mae in fo "Initial Conditions"

Ex: $U(0)=17$ (we lenow temp of $t=0$) $U\left(t_{0}\right)=S$

- $U^{\prime}(0)=6$ (we lena rate of ch. of temp)

$$
U^{\prime}\left(t_{0}\right)=S
$$

Using (2), $U(0)=C+T_{0}=17$ giving $U(t)=\left(17-T_{0}\right) e^{h t}$. $+T_{0}$

THE Above Involved the example of a $1^{s T}$ order, linear diff eq ${ }^{n}: U^{\prime}-k u+k T_{0}=0$. In physical tHeories and in engincering applications, we can come into contact with a myriad of different first order ens and so, let's approach them generally:

- A first order eq is of the form
(*) $y^{\prime}=F(t, y) ; y=y(t)$
whee $F:[a, b] \times \mathbb{R} \longrightarrow \mathbb{R}$ is any function. Here, we understand that $y=y(t), y^{\prime}=y^{\prime}(t)$.
- Linear vs. Non-linear Equations.
(*) is linear if for any $\alpha, \beta, \omega, y \in \mathbb{R}$

$$
F(t, \alpha \omega+\beta y)-\alpha F(t, \omega)-\beta F(t, y)
$$

is a function of t only.
Example: Newton's Law of Cooling:

$$
u^{\prime}=k\left(u-T_{0}\right): F(t, u)=k u-k T_{0} .
$$

Now,

$$
F(t, \alpha \omega+\beta y)-\alpha F(t, \omega)-\beta F(t, y)
$$

$$
\begin{aligned}
& =k\left(\alpha(\omega+\beta y)-k T_{0}-\alpha k \omega_{1}+\alpha k T_{0}-\beta k y+\beta k T_{0}\right. \\
& =k(\alpha+\beta-1) T_{0} \longleftarrow \text { independent of } w_{1} g_{!}
\end{aligned}
$$

In Fact, the geneal first order linear equation is alwaeps of the form
(x) $\quad y^{\prime}+B(x) y+C(x)=0$
for some functions $B_{1} C, \quad x \in[a, b]$
Solving $T_{H \in E}$ General Linear Equation:
Set $\mu(x)=\int_{a}^{x} B(s) d s$. Then, $\frac{d}{d x} e^{\mu(x)}=B(x) e^{\mu(x)}$ and so, one equation is equivalent to

$$
\frac{d}{d x}[\mu(x) y]=-\mu(x) c(x)
$$

Thees,

$$
\text { (4) } y(x)=\frac{-1}{\mu(x)}\left[\int_{a}^{x} \mu(s) c(s) d s .+c\right]
$$

is a solution to the equation.
Theorem: Given any linear, first order eq. $y^{\prime}+B(x) y+C(x)=0$ for functions continuous on $[a, b]$, the solution satisfying $y(a)=C$ is (*)

THEOREM: (UNIQUENESS) Under the hypotheses of the previous theorem, the solution $y(x)$ is the inly Solution satisfying $y(a)=C$.

If there are two solutions y,w then $v=y-\omega$ satisfies $v^{\prime}+B(x) v=0$ and $v(a)=y(a)-\omega(a)=c-c=0$
More, $\frac{d}{d x}(\mu(x) v)=0$ giving $v=\frac{k}{\mu(x)}$. Since $v(a)=0 \Rightarrow k=0$
and so v is constant. Since $v(a)=0, v=0$ and we see $y(x)=\omega(x)$ in
THE solution $y=-\frac{1}{\mu}\left(\int \mu c d x+C\right)$ is a 1 -parameters family of solutions to our problem. THE parameter indexing our family
is THE constant of integration. This family' forms the General Solunon of our equation.

Given more information, the constant C can be determined.

Examples:

- Newton's Law of Cooling: For some given $k \neq 0, T_{0} \in \mathbb{R}$, Find the geneal solution of the Newton model

Rewrite

$$
\begin{aligned}
& \text { levite } T^{\prime}=k\left(T-T_{0}\right) ; t \in[0, \infty) \\
& \longrightarrow T\left(k T+k T_{0}=0 \text { it } \dot{\prime}\right. \text { /sTorder, linear. } \\
& \longrightarrow(t) \int_{0}^{t} \mu(s) \cdot k T_{0} d s
\end{aligned}
$$

where $\mu(t)=\exp \left[\int_{0}^{t}(-k) d s\right]=\exp [-k t]=e^{-k t}$
giving

$$
\begin{aligned}
T(t) & =-e^{k t} \int e^{-k s} \cdot k T_{0} d s \\
& =-k T_{0} e^{k t}\left[-\frac{1}{k} e^{-k t}+C\right] \\
& =T_{0}-M e^{k t}
\end{aligned}
$$

Does it work? $T^{\prime}=-k M e^{k t}$

$$
\text { So } \begin{aligned}
T^{\prime}-k T+k T_{0} & =-k \mu e^{k t}-k\left(t_{p}-\mu e^{k t}\right)+k+p \\
& =0 \text { ! }
\end{aligned}
$$

It seems that linear equations are ra thee straight forward.
Non-Lmen Equations:

- $y^{\prime} \sin (y)=3 y e y^{\prime}$
- $y^{\prime} y^{\prime} 3$ and mong more. She resolution of these equations depends on our point of view.
(I) Separable Equations.

A First order equation is celled Sep. if thur ane functions $f(x), g(y)$ so that our eqn is equivalent to

$$
\frac{d}{d x}(g(y))=f(x)
$$

\longrightarrow it's easy to see $y(x)=g^{-1}\left(\int f(x) d x\right)$
is the sol of the problem.

Ex: $\quad \ln \left(y^{\prime}\right)=y+1$.
then $y^{\prime}=e^{y+1} \rightarrow e^{-3 y^{\prime}} y^{\prime}=e$

$$
\begin{aligned}
& \rightarrow e^{-y} d y=\int e \cdot d x \\
& \rightarrow-e^{-y}=e x+c \\
& e^{-y}=c-e x \\
& y=-\ln (c-e x) \\
&=\ln \frac{1}{c-e x} \text { fl any }
\end{aligned}
$$

Constant C.
Check: $y^{\prime}=-\frac{-e}{c-e x}=\frac{e}{c-e x}$

$$
\begin{aligned}
\ln \left(y^{\prime}\right) & =\ln (e)-\ln (c-e x) \quad y+1=1-\ln \left(c-e_{x}\right) \\
& =1-\ln (c-e x)
\end{aligned}
$$

Ex: $\left(y^{\prime}\right)^{2}-36 x y=0 ; \quad y \geqslant 0$.
(*) $y^{\prime}=6 \sqrt{x} \sqrt{y}$

$$
\text { So } \begin{aligned}
\int \frac{d y}{y^{1 / 2}}=\int 6 x^{1 / 2} d x \rightarrow 2 y^{1 / 2} & =\frac{12}{3} x^{3 / 2}+c \\
& =4 x^{3 / 2}+c .
\end{aligned}
$$

So $y(x)=\left[2 x^{3 / 2}+c\right]^{2}$ for some $C \in R$.

Check: $y^{\prime}=2\left[2 x^{3 / 2}+c\right] \cdot 3 x^{1 / 2}=6 \sqrt{x}\left(2 x^{3 / 2}+c\right)$

$$
6 \sqrt{x} \sqrt{y}=6 \sqrt{x} \cdot\left(2 x^{3 / 2}+c\right)
$$

Lecture II:
(1) Equation: $1^{\text {ST }}$ order.
(2) General Sol is a 1-parameter family of functions $y(t)$ all of whom satisfy our equation.

Tine solution governs the behaviour of the quantity,
(3) Particular solution. A function you measure!
$y(t)$ chosen from the 1-parameter family that satisfies a condition.

Ex: $y\left(t_{0}\right)=$ Yo $_{0} \quad$ The called initial conditions.
$\frac{\text { Ex: }}{7}$ A bacterium grows in a dish with enough food supp to support at most loco cells. If there ace loo cells in the dish at the arket at the number of cells grass in proportion to the Carrying
capacity less the pop. Find the ppi at t hrs.

- $P(t)$ is $P P^{D}$ at time t.
- $P^{\prime}(t)=k P(100-p) \quad T_{H i s}$ is a sep.eqn!

$$
\begin{gathered}
\frac{d P}{P(100-P)}=k d t \\
= \\
\frac{1}{1000}\left(\frac{1}{100-P}+\frac{1}{P}\right) d P=k d t \\
\text { So } \frac{1}{100}(\ln P-\ln (100-P))=k t+C \\
\text { i.e. } \ln \frac{P}{1000-P}=1000 \lambda t+C \\
\frac{P}{100-P}=A e^{1003 k t} \\
\rightarrow P(t)=\frac{1000 A e^{1000 k t}}{1+A e^{1000 h t}} ; P(0)=\frac{1008 A}{1+A}=100 \\
\quad \rightarrow \frac{A}{1+A}=1 / 10 \\
P(1-1 / 10)=1 / 10 \\
P(t)=\frac{1000 e^{1000 k t}}{1+1 / q e^{1000 k t} \quad P l o t \text { graph }}
\end{gathered}
$$

Some dynamics: Here, we consider the special
$1^{\text {sT }}$ order eq $\left\{\begin{array}{l}y^{\prime}=f(x, y)_{Y_{0}} . \\ y\left(x_{0}\right)={ }_{0} .\end{array}\right.$
A solution to this problem is a diff function $y(x)$
satisfying $y^{\prime}=f(x, y)$ and passing through the point $\left(x_{0}, r_{0}\right)$. The equation tells us a lot!

- if $f(x, y) \geqslant 0$ then $y^{\prime} \geqslant 0$ and so $y r$
- if $f(x, y) \leqslant 0$ then $y^{\prime} \leqslant 0$ and $y y$

Ex: $\quad y^{\prime}=(y-1)(y+2)^{2} ; y\left(x_{0}\right)=y_{0}$

- $f(x, y)=(y-1)(y+2)^{2}=0$ if $y=1$ or $y=-2$.
- $y \in(-\infty,-2): f<0\rangle$
- $y \in(-2,1): f<0 \quad>$
- $y \in(1, \infty): f>0, \quad \begin{aligned} & \text { if }\left(x_{0}, y_{0}\right) \in A, y(x) \rightarrow \infty \\ & \text { aces } x \rightarrow \infty .\end{aligned}$

THELINES $y=1, y=-2$ ane called equilibrium lines.
Let's tach in mae gencealety:

- $y^{\prime}=f(x, y)$; Equilibria are given by

$$
f(x, y)=0
$$

- An Equilibrium is STABLE if all nearby trajectories converge to it
converge to it
UNSTABLE if no nearby trajectories
- Semi-stable obvious deft. (our last ex has 1 unstade and I semi-stable eq ${ }^{m}$)
Ex: Consider the eq n,

$$
\text { - } y^{\prime}=y(y-1)^{2}(y-2)
$$

and suppose $y(0)=3 / 2$. Find $\lim _{t \rightarrow \infty} y(t)$.

Sol, $y=0,1,2$ ace equilibrial.
$y^{\prime}<0$ if $y \in(1,2) \quad 3 / 2 \in(1,2)$ so $\lim _{t \rightarrow \infty} y(t)=1$
$y^{\prime}>0$ if $y \in(2, \infty)$

Ex: $y^{\prime}=\sin (y)$
Equilibria at $y=0, k \pi j, k \in \mathbb{Z}$

- if $y(1)=3 \pi / 2, y(t) \rightarrow \pi$
- if $y(1)=-\pi / 2, y(t) \rightarrow-\pi$.

