A Framework for Assessing Enterprise Resources Planning (ERP) Systems Success: An Examination of its Aspect Focusing on External Contextual Influences

Princely Ifinedo

1 Department of Computer Science and Information Systems, University of Jyväskylä, P. O. Box 35, Jyväskylä, Finland, pifinedo@acm.org; premifin@cc.jyu.fi

Abstract. Assessing the success or effectiveness of information systems (IS) is a critical issue to researchers and practitioners alike. IS evaluation, to some practitioners, is a nightmare because of the lack of knowledge regarding such issues. Researchers offer little help to practitioners as the IS research community is divided on which issues best represent IS success and what relevance should contingency factors have in such discussions. We add to the debate on IS success evaluation literature by focusing on the development of a conceptual model or framework that could be beneficial to practitioners wishing to assess the success of a particular group of IS called Enterprise Resources Planning (ERP) Systems. The proposed model incorporates the dimensions of success and contingency factors. Thus, the body of knowledge in this area of research may be enriched by our endeavors. ERP systems are chosen for two reasons, i.e., their popularity and the strategic/operational improvement capabilities they offer firms. Our research effort benefits from relevant theoretical insight and models. In particular, some influential researchers have suggested that focusing on the dimensions of IS success alone might be insufficient to fully appreciate the overall assessment of IS effectiveness or success. They advocated that researchers should consider the influence of contextual or contingency factors in addition to the dimensions of success. However, the main thrust of this present paper is on examining the influence or impact of some selected external environmental factors on ERP systems success. The empirical data for this study was obtained from 62 subjects in 44 private firms in diverse industries in two Northern European countries. Our data analysis, using nonparametric tests indicated that ERP success did not differ according to industry type, climate, or national economy type. Implications of our findings and future research directions are outlined.

1 Introduction

“Researchers should systematically combine individual measures from the I/S success categories to create a comprehensive measurement instrument. The selection of success measures should also consider contingency variables, such as the independent variables being researched; the organizational strategy, structure, size, and the environment of the organization being studied; the technology being used; and the task
and individual characteristics of the system under investigation” (DeLone and McLean, 1992, p.87-88).

The foregoing vignette is relevant to our discourse. It is taken from the influential work of DeLone and McLean [DM] (1992) wherein these authors developed a model or framework for evaluating the success or effectiveness of information systems (IS). The DM IS success framework is generally accepted as one of the most complete models in the IS evaluation literature (Ballantine et al., 1997; Rai et al., 2002, Iivari, 2005). However, the DM model is particularly relevant at the organization level and does not account for impact emanating from influences of exogenous factors on the success of the IS. This limitation in the DM model perhaps explains the urgency in the vignette. Critiquing the DM model, Ballantine et al. (1997) noted that a model having both explanatory and predictive values would be a contribution in this area of study. This is one of the motivating stimuli to our research.

There are several critical issues facing the IS success evaluation research (Keen, 1980; DeLone and McLean, 1992; Saarinen, 1996; Seddon, 1997; Ballantine et al., 1997; Grover et al., 1996). The major issue concerns the conceptualization and operationalization of success and its measures. Success is an elusive term with many dimensions (Ballantine et al., 1997; Rai et al., 2002, Myers et al., 1997). Rai et al. (2002, p.50), write that “Theorists, however, are still grappling with the question of which constructs best represent IS success. The problem lies in the ambiguity of the concept and the multiplicity of IS success constructs pervading the research.”

IS success models are often formulated without the consideration of exogenous influences and some researchers (e.g., DeLone and McLean, 1992; Myers et al., 1997) have advocated the relevance of contingency factors in any IS success model. These arguments are pertinent because any model incorporating relevant contingency factors may offer added advantages as better insights will emerge. Additionally, other researchers (Grover et al., 1996; Shang and Seddon, 2002; McLean et al., 2002) drawing from the organizational effectiveness literature (Cameron and Whetten, 1983) have suggested the perspective of the evaluator is equally important and should not be downplayed.

One of our research objectives is to propose a conceptual model that could be of use to practitioners wishing to assess the success of a particular group of IS called Enterprise Resources Planning (ERP) Systems. We believe that focusing on this technology will be beneficial to both researchers and practitioners. We justify our choice of the technology with the following reasons. ERP systems are among the largest IS investment in many organizations across the globe and such systems are diffusing globally. According to industry watchers, the ERP market worldwide is expected to grow from US$47.8 billion in 2004 to US$64.8 billion by 2009 (AMR Research, 2006). ERP systems are popular because the technology offers modern firms an opportunity to improve their strategic and operational capabilities.

ERP are complex systems and some adopting organizations may lack knowledge regarding how to assess the success of this software. In-depth interviews with case companies in two Northern European countries (i.e., Estonia and Finland) regarding how they evaluate the success of their ERP underscored this lack of knowledge (Ifinedo, 2005; Ifinedo and Nahar, 2006). Our observations are similar to those made by Seddon et al. (2002) where these researchers discussed the poor state of IS systems evaluations in organizations. They concluded that “…many firms do not conduct
rigorous evaluations of all their IT investments” perhaps due to a lack of knowledge in such areas (p.11).

Furthermore, DeLone and McLean (1992) stressed that researchers should take the nature of technology being studied into account. In that regard, the appreciation of the complexity of ERP and its acquisition imperatives led us to propose an extended success measurement model for the software (Ifinedo, 2006). Importantly, there is a scarcity of literature on ERP systems success assessment (Gable et al., 2003). In contrast, much of the literature deals with the adoption and implementation of such systems (Esteves and Pastor, 2001) which some researchers (see Ifinedo, 2006) argue should be expanded. Of note, researchers discussing aspects of ERP success include the following: Kappos, 2000; Willcocks and Sykes, 2000; Tan and Pan, 2002; Gable et al., 2003, Sedera et al., 2003, 2004, Chadhar and Rahmati, 2004, Morton and Hu, 2004. Specifically, Kappos (2000) discussed organizational culture and the achievement of ERP strategic advantages. Willcocks and Sykes (2000) suggested that ERP outcomes in organization will be higher when technological (IT-related) issues are not sidelined. Gable et al. (2003) developed a model for measuring the success of ERP at the organizational level which Ifinedo (2006) extended. Sedera et al. (2004) investigated the effect of organization’s size on ERP success. The work of Chadhar and Rahmati (2004) focused on the impact of national culture on ERP success and Morton and Hu (2004) theorized about relationships between organizational structure and ERP systems.

Despite the growing interest in the area of ERP success, research efforts have not been directed toward developing a framework that could relate the differing issues (and others) mentioned in the preceding paragraph. We admit it is a daunting task to attempt to develop such a conceptualization and ground it in theory; nonetheless, as previously noted, it is one of the objectives in our research. The other objectives in our study relate to examining the effect or influence of contingency factors on ERP success. Overall, our effort represents an initial attempt in this area of study which future endeavors can build upon and refine. Next, we briefly discuss the development of the conceptual model for assessing the success of ERP systems which we follow with discussions on the study focusing on one aspect of the model.

2 Background: The Main Model and the Paper’s Focus

Studies assessing the success of IT systems and functions have been ongoing for three decades (see Hamilton and Chervany, 1981; DeLone and McLean, 1992; Myers et al., 1997; Gable et al., 2003), and several models have been produced to guide the discourse. However, frameworks highlighting the impacts of contextual or contingency factors on IT systems evaluation are few (e.g., Saunders and Jones, 1992). Drawing from prior studies, we propose a framework (Figure 1) that could stimulate future inquiry regarding the relationships between contingency factors and ERP systems success assessment. It is impossible for us in this paper to discuss in depth the development of the model due to space limitations; however, full discussions will be made available elsewhere.
In summary, our framework, as shown in Figure 1, adapted the IS function performance evaluation framework proposed by Saunders and Jones (1992), which Myers et al. (1997) expanded to include the dimensions of IS success of DeLone and McLean (1992) and contingency variables such as industry type, size of organization, IT skills, business goals and mission. Myers et al. (1997) called their resulting framework “the contingency theory of IS assessment”. Further, Gable et al. (2003) developed an ERP success measurement model with four dimensions of success that borrows from the DM model which Ifinedo (2006) extended to six. A full discussion on the development of the six dimensions of ERP success is available in the Proceedings of ICEIS 2006 (Ifinedo, 2006). Finally, we incorporated Somers et al.’s (2000) ERP systems implementation conceptual model that includes contextual factors such as industry type, size, and structure, among others. The researchers implied that these variables could influence the outcomes (or success) in ERP acquisitions to provide a justification for the inclusion of such variables in our framework.

We provide a rationale for proposing the integrative ERP success assessment model by grounding it in relevant theories: We believe that the General Systems Theory (GST) developed by von Bertalanfý (1968) provides an umbrella for our model considering that our model consists of differing parts. GST posits that any system consists of a multitude of parts and processes that are interrelated and interdependent,
such that changes in one part might affect other parts. As research in the area of ERP success blossoms, it is hoped that interrelations and interdependency among the factors highlighted in Figure 1 can be established. Second, our integrative ERP success assessment framework consists of two major contextual levels (i.e., external and internal).

As these levels are composed of contingency factors, the Contingency Theory developed by Lawrence and Lorsch (1967) is particularly relevant. It is also interesting to note how Kast and Rosenzweig (1973) eloquently linked the two preceding theories in their work. Another relevant theoretical base for our framework is the Stakeholder Theory (ST) that was proposed by Freeman (1984). ST posits that sustainable success rests upon a systematic consideration of the views of all key stakeholders. Thus, ST could facilitate insights when ERP success is to be discussed from the point of view of differing organizational stakeholder groups which is similar to the dictates of the organizational effectiveness literature (Cameron and Whetten, 1983). For example, in our study, we considered the viewpoints of top- and mid-level employees.

The framework (Figure 1) highlights the impact of the contingency variables on the dependent variable, namely, ERP systems success. The broken lines are used to separate the contexts (i.e., external and internal). The bold arrows show the impact of organizational variables, including technological issues on ERP success, and the curved lines depict the interacting effects or the moderating roles between elements in both the technological and organizational variables. The dimensions of ERP success and perspective of the evaluator are presented as well.

To illustrate how the integrative framework of ERP system success assessment can be used to provide relevant insight, we focus, in this paper, on how variables in the environment of the proposed framework may influence ERP success. Although external contextual factors might include other components (e.g., government regulations, the influence of suppliers/partners, national culture), the two main reasons to choose our variables were: (1) simplicity/illustration purposes and (2) the availability of ERP implementation studies related to these issues.

Our study of the literature revealed that other researchers (e.g., Chadhar and Rahmati, 2004) have discussed the impact of other external contextual factors, i.e., national culture on ERP success. Most importantly, the study being reported here is the first part in our series of efforts to investigate the impact of external factors on ERP success, the second part, to be published elsewhere, will use more multiple and ordinal data than was used for this present study. Nonetheless, we believe the findings of this study will add to knowledge in the field. Specifically, this paper is designed to provide answers to the following questions:

I. Does industry type influence a firm’s assessment of ERP success?
II. Does industry climate influence a firm’s assessment of ERP success?
III. Does national economic climate influence a firm’s assessment of ERP success?
3 ERP Success Measurement and External Contexts

3.1 ERP Systems Success Measurement

Our definition of ERP systems success refers to the utilization of such systems to enhance organisational goals (Myers et al., 1997; Gable et al., 2003). We stress that the “success” that we describe is different from the technical installations for ERP implementation success. The works of Gable and colleagues (e.g., Gable et al., 2003; Sedera et al., 2003) provide examples of studies discussing the same theme as ours. They developed a model for measuring ERP systems success which benefited from the DM IS success model. Perhaps the significant contribution made by Gable and colleagues related to their argument for an addictive model rather than the causal model of the success measures that was originally developed by DeLone and McLean. Ifinedo (2006), in turn benefited from the Gable and colleagues’ perspective.

In brief, Gable and colleagues eliminated (through multi-stage data collection and statistical analysis) the Use and User satisfaction dimensions. Arguments against dropping these dimensions are also available in the literature (Saarinen, 1996; Seddon, 1997; Ballantine et al., 1997; Iivari, 2005). In their arguments for the mutual exclusivity of success dimensions, Gable et al. (2003) suggested an overarching view of success in which “each measure [and/or dimension] only addresses one important aspect of IS success” (p. 578). And, the ERP systems success dimensions retained in Gable and colleagues’ model are as follows: System quality (SQ), Information quality (IQ), Individual impact (II) and Organizational impact (OI). Following the additivity perspective presented by Gable and colleagues for ERP success measurement, Ifinedo (2006) built on the work of Gable and colleagues by adding two relevant dimensions of ERP success, namely, Vendor/Consultant quality and Workgroup impact. Incidentally full discussions are available in the Proceedings of ICEIS 2006 (Ifinedo, 2006). The extended ERP success measurement framework is illustrated in Figure 2.

![Fig. 2. The extended ERP systems success measurement model.](image-url)
success measures in this study has 30 measures, which compares with the 27 ERP success measures used in other studies (e.g., Sedera et al., 2004).

3.2 External Contexts

In the Management Science literature, emphasis has been placed on the impact of external environmental factors on the organization (Duncan 1972; Miller and Friesen, 1982). Researchers (e.g., Miller and Friesen, 1982) over the last three decades have called for studies not to neglect the relationships between environmental variables and the organization. In the context of ERP systems, the framework proposed by Somers et al. (2000) suggest that contextual factors (including industry type, competitiveness, etc.) are important for assessing ERP outcomes in adopting organizations. It is important to stress that the selected examples in the external environment are offered as illustrative rather than as exhaustive. Figure 3 depicts the hypotheses relating to the selected external contextual variables and ERP systems success.

![Fig. 3. Hypothesized Influence of External Contextual Factors and ERP Systems Success.](image)

3.2.1 Industry Type and ERP Success

The firm’s related industry is relevant to how the firm responds to the strategic use of IT systems (Johnson and Carrico, 1988; Kearns and Lederer, 2003; Wu and Wang, 2003). Evidence exists that support differences among industries concerning the nature of their information intensity and IT usage, and success (Hrebiniak and Snow, 1980; Busch et al., 1991; Wu and Wang, 2003; Lee and Kim, 2006). Porter and Millar (1985) coined the term “information intensity” to classify industries. For the purposes of this study, we use an encompassing description of “information intensity” from Glazer (1991, p. 5), who states “More generally, a firm is information-intensive to the degree that its products and operations are based on the information collected and processed as part of exchanges along the value-added chain. Whereas traditional products and operations are relatively static, information-intensive products and operations change as new data from the environment becomes incorporated into them.” Wu and Wang’s (2003) ERP satisfaction study in Taiwan divided industry into two broad classes: (1) electronic/sciences (ES), including semiconductor, telecommunication industries, and (2) traditional industries (plastic, metal, etc.). Following the cate-
gorization used by Wu and Wang (2003), we believe that industries can be classified into two main categories, namely, manufacturing and services sectors, to facilitate insight.

Firms in industries that have a need for complex IT systems such as ERP in their business processes and operations procure such systems as part of their strategic moves to be competitive (Segars and Grover, 1995; Davenport, 1998; 2000). Moreover, ERP might be appropriate in certain industries (e.g., banking and retail) that generate information as part of the exchange in the value-added chain (Porter and Millar, 1985; Glazer, 1991). Traditional, relatively static industries (e.g., metal and cement manufacturing) with low information-intensive products might find ERP useful but unessential (Busch et al., 1991). Indeed, Wu and Wang (2003) found that the overall ERP satisfaction level in industry with high information intensity is significantly higher than that in traditional industry. Based on the aforementioned findings, it is likely that the ERP success might differ according to industry type and information intensity. Thus, we hypothesized:

H1a: ERP success will differ according to industry sector (e.g., manufacturing and services)
H1b: ERP success will differ according to the information intensity for industries

3.2.2 Industry Climate (Stability and Competition) and ERP Success
Grover and Goslar (1993), citing Pfeffer and Leblebici (1977), suggest that organizations in relatively undifferentiated and stable environments may find IT systems adoption unnecessary. However, firms in unstable environments (characterized by ever-changing landscapes) see IT systems as critical and necessary infrastructure, seamlessly use such systems to gain competitive advantage (Porter and Millar, 1985; Glazer, 1991; Davenport, 2000), and are adept at strategically using them (Busch et al., 1991; Johnson and Carriço, 1988; Davenport, 1998; Lee and Kim, 2006).

Furthermore, in an attempt to be competitive, firms experiencing more competition and instability in their industries will be better poised to respond to change by using relevant IT systems more than do firms in less competitive industries (Johnson and Carriço, 1988; Glazer, 1991; Segars and Grover, 1995; Kearns and Lederer, 2003). Such firms can more readily modify or adapt their IT systems to meet these changes than those in stable and less competitive environments (Pfeffer and Leblebici, 1977; Glazer, 1991). Therefore, we formulate the following hypotheses:

H2a: ERP success will differ according to the stability in the industry
H2b: ERP success will differ according to the competition in the industry

3.2.3 National Economic Climate and ERP Success
Differences in the economic status of nations are a major differentiator in the perception of IT benefits (Dewan and Kraemer, 2000; WEF, 2004). Dewan and Kraemer (2000) sampled 36 countries concerning the structure of returns from IT capital investments and found significant differences between developed and developing countries. Their results indicated that developed countries had significant positive returns from capital investments, whereas the opposite was true for developing countries.
Huang and Palvia (2001) suggested that the poor economic capabilities in developing countries present a problem regarding ERP penetration. Gregorio et al. (2005) found that early IT adopters (developed countries) gain advantages that are unavailable to late adopters (emerging and developing countries). Davenport (2000) commented, “[ERP] can lead to greater productivity and efficiency in advanced economies” (p. 24), thus implying that such benefits might be difficult to achieve in developing economies. Seeking new sources of income, ERP vendors increasingly target newly emerging economies, including Estonia (Clouther, 2005). Thus, it is likely that countries that have just started adopting these systems may not have sufficient experience with them, and could be realizing lesser benefits from their systems (Pyun, 2002; Gregorio et al., 2005). With respect to the two countries in this study, reports show that Finnish organizations adopted such systems earlier than did their Estonian counterparts (van Everdingen et al., 2000; Clouther, 2005). Accordingly, we expect the diverse levels of expertise and the availability of resources between nations to be influential factors in how IT systems success assessments are made. The findings in the work of Watson et al. (1997) provide empirical evidence in support of the foregoing statement. Therefore, we propose the following hypothesis:

H3 - ERP success assessment will differ according to national economic climate

4 Methodology

We identified 350 and 120 firms from databases of top companies in Finland and Estonia to participate in a survey. We also used other sources including local contacts to bolster our response rates. We concentrated on private organizations in the two countries because we believe the adoption of ERP systems might be higher there than in public sector organizations. We developed a questionnaire that was piloted with four individuals including ERP users and IS academics. The questionnaire required respondents to indicate agreement with statements on a 7-point Likert type scale (1 = strongly disagree, and 7 = strongly agree). Since the unit of analysis of this study was at the firm level, only key organizational informants including senior and unit managers received a packet consisting of a cover letter, questionnaire, and a self-addressed, stamped envelope. We received 62 individual responses (i.e., 39 from Finland and 23 from Estonia).

Our data classified by hierarchy comprised 26 (42%) top-level management and 36 (58%) mid-level managers. Our response rate combined for the two countries was 9.5% which compares with similar studies in the region. Full discussions on the research method and the questionnaire used are available elsewhere (Ifinedo, 2006; Ifinedo and Nahar, 2006). We used 30 measures for the 6 dimensions in Figure 2; its reliability assessed by Cronbach alpha is 0.932 which exceeds the threshold value of 0.8 recommended by Nunnally (1978) indicating that the ERP success scale is adequate. These measures are discussed in Ifinedo (2006) and are readily available in Ifinedo and Nahar (2006).

We classified firms into low high and low information intensity firms using “1” and “2”, respectively. Similarly, the two industrial sectors: “manufacturing” and “ser-
“vices” were represented with dichotomized variables similar to those used for information intensity. Participants were instructed to use a 4-point Likert-type ordinal scale indicating how stable their industries were in terms of changes and innovations (1 = unstable, 2 = moderately stable, 3 = stable, and 4 = extremely stable). Similarly, a 4-point Likert-type scale was used to determine competitiveness of their industry (1 = non-competitive, 2 = moderately competitive, 3 = competitive, and 4 = very competitive). We classified the two countries by national economic development with “1” = developed country - Finland, and “2” = emerging economy – Estonia (WEF, 2004; CIA: World Factbook, 2005; Ifinedo and Davidrajuh, 2005); this we believe is indicative of their respective human development indices (HDR, 2005). Finland and Estonia ratings were 0.941 and 0.853, respectively on this index.

5 Analysis and Results

We tested the normality of our data variables using the Kolmogorov-Smirnov statistic, significant at the 0.05 level. The results indicated that our data did not conform to a normal distribution. Moreover, our sample size is too small to permit the use of parametric tests; as such, we decided to use non-parametric tests for our data analysis.

For hypothesis H1a we used the Mann-Whitney U test significant at p<0.05. The results indicated that there were no significant differences across industry types (manufacturing and services) on all the dimensions of ERP success. With respect to hypothesis H1b, using the same test, the results yielded a similar finding, namely, there were no significant differences when the firms were classified by the information intensity of their businesses. These findings are inconsistent with those in Wu and Wang (2003) suggesting firms in certain industries indicated more satisfaction with ERP than others, and with suggestions in other works (Hrebiniak and Snow, 1980; Busch et al., 1991; Wu and Wang, 2003; Lee and Kim, 2006) that such a difference might exist. On the other hand, to some extents, our data supports other researchers (e.g., Jarvenpaa and Ives, 1990; Kearns and Lederer, 2003) who found no support for the notion of information intensity as a differentiator between firms. Our analysis in the context of ERP success assessment bears this out as well. Particularly, our results seem to be suggesting that perhaps differences across firms are less visible given the fact that over the years, thousands of “best practices” and procedures from differing industries have been added to ERP systems (Swan et al., 1999; Davenport, 2000). Klaus et al. (2000, p.143) in their work that provided background information on ERP systems noted “ERP targets multiple industries with very different characteristics…ERP supports multiple industries…”

Regarding hypothesis H2a, our data analysis using the Kruskal-Wallis Test significant at p<0.05 indicated there were no significant differences in how firms in differing competitive environments assess ERP success. And, the result with hypothesis H2b formulated to indicate whether the stability in the industry in which a firm is situated vis-à-vis changes and innovations will have a bearing in how ERP systems success is assessed did not produce any significant statistical difference for our sample. We believe the lack of differences on these two variables can also be explained by discussions offered above. Further, the results may imply that ERP software are
becoming standards for organizations, and may not be a distinguishing competitive tool for the adopting firms.

Hypothesis 3 which seeks to find out whether national economic climate might be a significant external contextual to watch out for when evaluating ERP success suggest that the dimension of System quality differ for firms in the two countries (Mann-Whitney U = 290, Wilcoxon W = 1070, p = 0.021). All the other dimensions did not yield any significant results. We are hard-pressed to posit that ERP success assessment in an emerging economy will be higher than that of a developed country as our results relating to the System quality dimension seem to be suggesting. In Ifinedo and Nahar (2006) we provided explanations as to why this difference might have arisen. In brief, we noticed that Estonian firms in our sample tend to be small-sized outfits and they procure mid-market ERP products that are less complex. In contrast, our sampled Finnish firms were larger and tend to procure top-of-line ERP software. It is safe to say there were no significant differences with the national economy type with regard to ERP success assessment for the two countries used in our study given that only one out of six dimensions showed a significant difference. The use of the two countries is for illustration purposes and as such is limiting. Other limitations of the study relate to its small-sized sample and the use of heterogeneous ERP systems in our analysis. The views presented in this study represent those of higher-levels employees; as such, our results cannot be taken as being representative of the opinions of junior workers.

6 Contributions and Future Study

6.1 Contributions of the Proposed Integrative ERP Assessment Model

- We present an opportunity for both external and internal variables to be considered when assessing ERP success in adopting firms.
- The integrative ERP success assessment model connects IS success dimensions, perspective of the evaluator, and contingency factors - under one framework.
- Overall, our study may form the bedrock for the emergence of “the contingency theory of ERP success assessment”.
- With regard to our focus on the relevant issues relating to the evaluations of ERP systems success, our research responds to the call made by DeLone and McLean (1992) not to ignore relevant issues.
- Our approach to ERP systems success measurement with six dimensions at the organization level could be used and refined by researchers in IS success evaluations domain. And, practitioners lacking knowledge on what to assess with regard to their ERP can use our extended ERP systems success measurement.
6.2 Contributions of the Study on the Effect of External Contextual on ERP Success

• Our findings indicate that ERP systems can yield comparable results in differing industries. Perhaps the software is becoming a standard for organizations, and may not be a distinguishing competitive tool for adopting firms. This information may be crucial for management using the technology and those wishing to procure such systems.
• Vendors of such systems in the region of this study can use the information in this study to intensify their promotion efforts.
• Against the backdrop of increasing cross-border investments in the IT and related industries between countries in the Baltic-Nordic region (Nissinen, 2002; CIA: World Factbook, 2005), corporate managers in the advanced countries of the region can benefit from our study to strategically plan for the deployment of complex IS such as ERP in the emerging nations of the region where they have interests given that firms from differing economies in the region espouse comparable views on the success of such systems.

6.3 Future Study

Research efforts in the future can use our framework to discuss ERP system success due to its comprehensiveness, namely, success dimensions and contextual factors are appropriately delineated. Our study can be replicated in other regions and contexts (e.g. public sector organizations) to increase our understanding, and the views of other organizational actors (i.e., junior employees) should be considered. We hope to present the results of our other findings relating to the other aspects of the model proposed (Figure 1) elsewhere. Overall, our findings will advance knowledge on the relationships between organizational contingency factors (size, structure, etc.) and technological variables on ERP success in adopting organizations.

References

Note: Please contact the author for the complete references.