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Candidates may attempt ALL questions in Section A and at most TWO questions in Section
B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

A1. What are the valency sequences of the two graphs below ? Prove whether each sequence
gives rise to a unique graph or not and, if not, display a non-isomorphic (simple) graph
which has the same sequence. [10]u u u u u u
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A2. Prove that a graph is bipartite if and only if it contains no closed walk of odd length. [10]

A3. What does it mean for a graph to be described as Eulerian ? Hamiltonian ? Draw or
describe four graphs on seven or more vertices which are, respectively, both Eulerian
and Hamiltonian, neither Eulerian nor Hamiltonian, Eulerian but not Hamiltonian
and, finally, not Eulerian but Hamiltonian. [10]

A4. How many edges and vertices does the complete bipartite graph Km,n have ? Embed
K3,4 in the torus and clearly indicate and count the faces in the embedding. Which
face is bounded by all four vertices of the larger partite set ? Hence or otherwise embed
K4,4 and verify that the Euler-Poincaré characteristic of the torus is the same. [10]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B8.
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B5. Draw: K4, K3,3, K1,5 + K3, K2,2 ×K1,3, K2 ×K1,3 K2,3 ◦K3 and (K2 ×K3) + K2. [12]

Using Kuratowski’s theorem or otherwise identify which of the above graphs are and
are not planar, proving the case either way. [18]

B6. (a) Prove that a graph which is connected and contains no circuits has n − 1 edges
and n vertices. Show that, if we are given a deck of a graph G and told G was
connected, that we can recognise whether G was or was not a tree. [10]

(b) We define the end-deck of G as the set of cards in the deck which correspond to
the removal of vertices of valency 1 from G. Given the following two end-decks
follow the instructions and hence reconstruct both trees:
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(i) Find the diameter and centre of each card. [8]

(ii) Considering only those cards with maximal diameter, look at the structure
of each “branch” off the centre and hence reconstruct that tree. [10]

(iii) Construct the end-decks of your answers to verify that you have the correct
solution. [2]

B7. What is a self-complementary graph ? Prove that the number of vertices in a self-
complementary graph is either 4n or 4n + 1, n ∈ Z. [10]

Exhibit three different self-complementary graphs with eight vertices. [20]

B8. (a) Define the graph theoretical concepts of radius, connectivity and girth. Explain
why radius is undefined for disconnected graphs and why g ≥ 3. [6]

(b) Let G have girth g, n vertices and m edges. Prove that m ≤ g
g−2

(n− 2). [12]

(c) Give examples of graphs with these combinations of the three parameters: [12]

radius 2 6 3 5
connectivity 1 2 3 2

girth ∞ 3 3 5

END OF QUESTION PAPER
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