Bsc Honours Part II, General Part II/III Mathematics
Graph Theory

November 1997
Time : 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

A1. Draw all the different trees which have seven vertices, indicating why they are all non-isomorphic.

A2. Draw all simple graphs with valency sequence (5, 4, 4, 3, 2, 1, 1).

A3. When is it possible that $G \circ H \approx G+H$?

A4. Consider the graph with edge set

$$
\{a b, a d, a h, a i, b c, b e, b g, c d, c i, c j, d e, d i, d j, e f, e g, f g, f i, g h, h i, i j\} .
$$

Show that it is non-planar by finding a subgraph of it homeomorphic to $K_{3,3}$.

SECTION B (60 marks)
Candidates may attempt TWO questions being careful to number them B 5 to B 8 .

B5. (a) Define the graph theoretical concepts of chromatic index and cubic graphs. [4]
(b) Prove the value of the chromatic index of K_{n}.
(c) Give examples of cubic graphs with 8,9 and 10 vertices, if possible, proving why if not.
(d) Is it true that a cubic Hamiltonian graph has chromatic index 3 ? Explain why. [10]

B6. (a) Prove that the chromatic polynomials of the graphs K_{n} and T_{n} (the complete graph and a tree on n vertices) are $\frac{t!}{((t-n)!}$ and $t(t-1)^{n-1}$ respectively. State the deletion-contraction formula and deduce from it the addition-identification formula.
(b) Using the complete intersection formula and the formulas above find the chromatic polynomials of the four graphs shown below.

B7. (a) Draw the graph G which has this adjacency matrix after explaining how to get the valency sequence of G from the matrix.

$$
\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

(b) Prove Euler's theorem categorising Eulerian graphs and the corollary about Euler paths. Hence deduce G is not Eulerian but has an Euler path.
(c) Find and describe an Euler path in G, explaining how you did it.

B8. (a) What are the eccentricities of the vertices in this graph? Draw two other nonisomorphic graphs which have the same set of eccentricities.

(b) Prove that the diameter of any graph is at most twice the radius and at least equal to the radius.
(c) Give four graphs with diameter 6 and radii 3, 4, 5 and 6 . Using evidence gained in this exercise or otherwise describe a way to draw a graph with diameter d and radius r for any valid r and d.

