Bsc Honours/General Part II/III<br>Graph Theory

June 2000
Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

## SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

A1. Suppose $G$ is Eulerian. Under what circumstances is $\bar{G}$ (the complement of $G$ ) also Eulerian ? Give two $n$-vertex Hamiltonian graphs $G_{1}$ and $G_{2}$ such that $\overline{G_{1}}$ is not Hamiltonian and $\overline{G_{2}}$ is, and explain why we must specify $n \geq 5$.

A2. What are all the possible valency sequences of trees with 6 vertices? Give examples of a tree with each sequence. Which of these sequences give a unique tree and which can also arise as the valency sequence of a graph which is not a tree ?

A3. What is the chromatic polynomial of the graph with this adjacency matrix ?

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

A4. Give 2-connected graphs with 9 vertices with matching numbers 2,3 and 4 , proving the connectivity and matching numbers. Why can't there be matching numbers 1 or 5 in such a graph ?

## SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B 5 to B 8 .
B5. (a) Given a planar graph $G$, prove that it is possible to add edges to it in order to make every face in the resultant graph $T$ a triangle. Explain why $T$ will have chromatic number at least $\chi(G)$, the chromatic number of $G$.
(b) Using Euler's formula for connected planar graphs $(n-m+f=2)$ and counting the number of vertices in $T$ of valency $i$ as $n_{i}$, prove

$$
\begin{equation*}
\sum_{i=1}^{\infty}(6-i) n_{i}=12 \tag{8}
\end{equation*}
$$

(c) Deduce that there is always a vertex of valency at most 5 in any planar graph. [4]
(d) Using induction on the number of vertices in a graph, prove that it is possible to colour any planar graph with at most five colours, by deleting from the graph the vertex of lowest valency in the inductive case.

B6. (a) Give examples of three different families of graph whose decks are made up of isomorphic cards.
(b) Prove that for any $G$ in the families above that $K_{2} \times G$ also has this property. Is this statement also true for $G \oplus G$ and $G \circ K_{2}$ ?
(c) Prove that any such graph is regular and describe how to reconstruct it.
(d) Give an example of a graph which is not in any of the above families which also has the property in question.

B7. (a) Embed $P_{4} \times \overline{\left(P_{3} \cup K_{1}\right)}$ on the torus, marking the faces and listing the sizes of all the faces. Prove that it cannot be embedded on the plane.
(b) Use the Euler-Poincaré formula to identify which graphs $G$ it is impossible to embed $P_{4} \oplus G$ on the surface with Euler-Poincaré characteristic $\chi$.

B8. (a) Show that these two graphs have identical valencies and eccentricities.

(b) Prove that one of them is planar by applying the planar embedding algorithm (in detail, showing all steps used) and the other is non-planar by Kuratowski's theorem and hence deduce that they are not isomorphic.
(c) Are either of these graphs Hamiltonian or bipartite?

