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1 Introduction to Graph Theory

A graph is defined as a (non-empty) set of vertices, some of which are joined by edges.
Mathematically, the graph G in figure 1 can be described by

V (G) := {a, b, c, d, e, f, g, h} and E(G) := {ad, af, bc, ce, df, dg, dh, fg, gh}.
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Figure 1: A graph with 8 vertices and 9 edges

Note that this set of letters and this particular way of drawing the graph is not a unique
one. What we are interested in is the way they are arranged with respect to each other,
not how they are placed or named on the page. Vertex a could be a person, a computer or
yoghurt. An edge could indicate whether two people know each other, whether the computers
talk the same language or if that object is one of a person’s favourite foods. Our aim in this
class is to see what we can say about graphs, whatever they are about. Similarly, it is not
significant that edge af is curved, we just drew it like that to make it clearer. Where edge
ce crosses edge dh there is not a vertex, as otherwise we would have marked it by a black
circle and a letter.

We say that two vertices are adjacent if there is an edge joining them and a vertex is
incident with an edge if it is one of the edge’s two vertices. Two edges are incident if they
have a vertex in common. We can also classify vertices by their valencies: the standard
way of doing this for a vertex v is to count the number of edges incident with v, a quantity
called the valency of v, ρ(v). For instance, in figure 1, we have ρ(a) = 2, ρ(b) = 1, ρ(c) = 2,
ρ(d) = 4, ρ(e) = 1, ρ(f) = 3, ρ(g) = 3 and ρ(h) = 2 and the valency sequence of G is (4,
3, 3, 2, 2, 2, 1, 1) [we normally order from high to low, but there is nothing significant in
the order]. We have special names for vertices with small valencies: if ρ(v) = 0 then v is an
isolated vertex, if ρ(v) = 1 then v is a terminal vertex and otherwise v is an internal vertex.
If, ∀v ∈ V (G), ρ(v) = r then we say that G is r-regular. The total valency of a graph G is∑

v∈V (G) ρ(v).

Exercise 1 Add/remove edges from G (from figure 1) to make it respectively, 2 regular, 3
regular and 4 regular.

Lemma 1 The number of vertices of odd valency in a graph G is even.

Proof: In counting the total valency of a graph G each edge is counted twice; once for
each end of each edge. Hence this figure is even and so, since the sum of the even valencies
is even, so must be the sum of the odd valencies. �
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Theorem 1.1 In any graph G there is always at least one pair of vertices of the same
valency.

Proof: Let V (G) := {v1, v2, . . . vp} so that |V (G)| = p. As each vertex has at most p− 1
choices for neighbours, ρ(vi) ≤ p − 1 for 1 ≤ i ≤ p. Thus there are p different possible
valencies (0, 1,. . . , p− 1) for the p vertices in G. However, if ρ(v) = 0 for some v ∈ G then
there cannot be a vertex w ∈ G for which ρ(w) = p − 1 and a similar argument applies in
reverse. Thus there are just p − 1 different valencies for the p vertices in G and thus the
result is proved by the pigeon-hole principle. �

1.1 The smallest graphs.

To get the feel of graphs we shall look at the smallest, in terms of numbers of vertices. There
is, of course, just one graph on one vertex, and it has no edges since in a (simple) graph
there cannot be loops. Similarly, with two vertices there are just two graphs, either with an
edge between them or not.
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Figure 2: The smallest graphs

For three vertices some interesting features of graphs start to emerge: there are actually
eight ways to assign edges to three vertices but four of these are redundant since the resulting
graph in those cases “looks the same” as one of the others. This concept is known as
isomorphism and, formally, two graphs G and H are isomorphic (G ∼= H) if there exists a
pair of bijections θ : V (G) → V (H) and ψ : E(G) → E(H). Note that this implies that, for
instance, the set of valencies of the vertices of G is the same as that of H, but this condition
is not enough as is shown by the two graphs in figure 3, which both have valency sequence
(3, 2, 2, 2, 1).
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Figure 3: Two non-isomorphic graphs with the same valency sequence

1.2 Isomorphism

In general it is a difficult thing to tell whether two graphs are isomorphic, and it is largely a
matter of practicing until you get good at it. However, there are several things you can do
initially which will prove that no isomorphism exists between two graphs:
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1. count the number of vertices and edges in each graph

2. determine both the valency sequences

3. check other easily found parameters for each graph and compare them

In each case, if any observation which is independent of how the graph is drawn differs
between two graphs then the two graphs cannot be isomorphic.

More advanced techniques follow similar ideas but can involve groups of vertices, edges,
or combinations of the two. For instance in figure 3 we can see that the graphs are different
by considering the (lone) vertex of valency three: in the left hand graph it is adjacent to the
three vertices of valency two, whereas this is not the case in the right hand one. Hence the
two graphs are different.

Exercise 2 Show that the two graphs in figure 3 are not isomorphic by considering the
vertices of valency 2.

To show that two graphs are isomorphic it is required to give an actual mapping between
the vertices of the two graphs and verify that the edge set are preserved, as shown in figure
4 for the two graphs. Note that the mapping is not a unique one (b and d and e and a could
be swapped) but that does not matter. What is important is that a mapping exists in which
the edge sets correspond as shown.

a→ y ae, ad, ac yz, yu, yv
b→w be wz
c→ v ca, ce vy, vz
d→u da uy
e→ z eb, ea, ec zw, zy, zvu u
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Figure 4: Two Isomorphic Graphs and an Isomorphic Mapping

1.3 Valency Sequences

We say that a valency sequence is graphical if there exists a graph which has that sequence.
The following theorem can be used to determine whether or not a sequence is graphical:

Theorem 1.2 The valency sequence D = (d1, d2, . . . , dp) with p − 1 ≥ d1 ≥ d2 ≥ . . . ≥ dp

is a graphical valency sequence of and only if the modified sequence D′ = (d2 − 1, d3 −
1, . . . dd1+1 − 1, dd1+2, . . . , dp) is a graphical valency sequence.

Proof: If D′ is a graphical sequence, then surely D is, since we can just add a vertex to
a graph G′ with D′ as its sequence and add d1 edges from it to the first d1 vertices in G′.
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Let G be a graph with valency sequence D. If a vertex v of valency d1 is adjacent to
vertices of valency dk for k = 2, . . . , d1 +1 then we can just remove v from G to give a graph
G′ with valency sequence D′.

So suppose there is no such vertex in G. We will show that from G we can always form
another graph with valency sequence D which does have such a vertex, and so we can proceed
as above. Let us suppose that the vertices are labelled vi with ρ(vi) = di and that v1 has
valency d1 and the sum of the valencies of its neighbours is maximal.

Since v1 is not adjacent to the next d1 vertices there must be two vertices vi and vj with
di > dj such that v1vj is an edge but v1vi isn’t. Since di > dj there must be a vertex which
isn’t adjacent to vj but is to vi, vk suppose. So we can then remove the two edges v1vj and
vivk and add v1vi and vjvk, which gives a different graph which still has valency sequence
D. But in this graph the sum of the valencies of the neighbours of v1 is greater than before,
contradicting the supposition of its maximality. Thus we can repeat this edge switching
operation (a finite number of times) until we get a graph with vertex v1 with the desired
property. �

To use theorem 1.2 we proceed as follows:

1. Consider the valency sequence; if it is easily seen to be graphical (all zeroes or an even
number of ones etc.) or can be seen to be non-graphical (includes a negative number,
sum of valencies is odd etc.) then stop.

2. Take a valency in the list (usually the largest) with value ρ, say, and remove it from
the sequence and subtract one from the next ρ other valencies to make a new valency
sequence

3. return to step 1

Note, though, that if you start with a sequence with an even sum then at each step you
will have an even sum since we are subtracting a total of 2ρ from the sequence sum. If you
get an odd sum halfway through then you know you have made an error.

Exercise 3 Test the following sequences using theorem 1.2 to see if they are graphical or
not: (if they are graphical draw an exemplar graph having that valency sequence)

1. (6, 5, 5, 4, 3, 3, 2, 2)

2. (6, 6, 4, 4, 3, 3, 2, 2)

3. (8, 4, 4, 4, 3, 3, 2, 2)

4. (5, 5, 5, 4, 3, 3, 2, 2)

Note that this procedure (if it works) finds only one graph with the valency sequence, in
order to find all graphs with the same valency sequence we have to be a little more rigourous
as shown in this example:

Given the sequence (3, 2, 2, 2, 2, 1) we remove the 3, and the possible sequences left are
(after re-arrangement) (2, 1, 1, 1, 1) or (2, 2, 1, 1, 0). Repeating this procedure for these two
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sequences, or by observation, we see that these are, uniquely, the graphs G1 and G2 in figure
5. To get a graph with the sequence S from G1 we have to add the three edges to three
vertices of valency 1, which can be done in the two ways shown as G3 and G4. For G2 the
edges must go to both 1s and the 0 and so that graph must be G5. Hence there are exactly
three graphs with valency sequence S.u u u u u u u u u u

G1 G2

uu uu uu uu uu
G4G3

u u
u u u u u

G5

u

Figure 5: Finding the graphs with valency sequence (3,2,2,2,2,1)

1.4 Basic Families of Graphs

We are now in place to define several families of graphs which we will be seeing many times
throughout this course. To start with we define the complete graph (on n vertices) Kn. This
has an edge between every pair of vertices and thus is unique for each value of n. At the
other end of the spectrum we define Kn to be the null graph on n vertices (notation to be
explored further in section 1.6). Similarly we define Cn to be the circuit on n vertices; we
take n vertices and add a sequence of n edges to form a cycle. Similarly Pn is the path on n
vertices (and can be formed from Cn by deleting one edge from it). Finally, the wheel graph
Wn is formed from Cn−1 by adding a vertex (normally drawn in the middle) with “spokes”
to all other vertices of the cycle.

Exercise 4 For which n is Kn a cycle? a path? neither? a wheel?

You may also have noticed in figure 2 earlier that the triangle graph (C3, K3) is the first
which we have seen whose vertices cannot be split into two sets, A and B say, such that no
vertex in one set is adjacent to another in that set. A graph whose vertices can be divided
into two such sets is called a bipartite graph. We define Ki,j as the complete bipartite graph
with two sets of size m and n all of which are joined to those in the other set. We can
similarly define complete tripartite graphs Ki,j,k (three sets of sizes i, j and k in which every
vertex is adjacent to every vertex not in its set), and so on. . .

Exercise 5 Which Kn, Pn, Cn are bipartite? tripartite? quadripartite? k-partite?

The numbers of (non-isomorphic) graphs on a particular number of vertices actually
grows very quickly: for four vertices there are 11, for five vertices there are 34, six there are
156, seven 1044 and eight 12346 (I used a computer to calculate these ;)
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Note that Kn (the largest graph on n vertices) has n(n−1)
2

edges since each vertex has the
maximum valency n − 1 and so the total valency of such a graph is n(n − 1). Hence the
number of edges is half that. This is therefore the maximum number of edges in a graph
with n vertices.
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K5 K5 C5 W5 K2,3
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Figure 6: Some graphs with five vertices

1.5 Operations on Graphs

Let G be a graph and S a set of vertices and/or edges. If S contains only edges and vertices
of G then G− S is formed by deleting, from G, all edges in S and all vertices in S, together
with all the edges incident with the vertices in S (since if those edges weren’t removed they
wouldn’t have two end vertices). If all edges in S have both of their vertices also in S then
S is a graph and we write S ⊆ G and say S is a subgraph of G.

More specifically, if a and b are vertices in G and ab is an edge between them then
G − a := G − {a} and G − ab := G − {ab}, but note that G − {a, b} is not necessarily the
same as G − {ab}. If S is simply a subset of the vertices of G then G − S is denoted by
G[S ′], where S ′ := G \ S, and is the subgraph induced by S ′.

G ∪ S is formed by adding, to G, the edges and vertices in S. G ∪ a := G ∪ {a} and
G ∪ ab := G ∪ {ab}, assuming that a and b are vertices in G, since otherwise we would
have an edge without two end vertices. Let G1 and G2 be subgraphs of G: G1 and G2 are
disjoint if they have no vertices or edges in common, and edge-disjoint if they have no edges
in common. We (ab)use the previous notation to define G1∪G2 as the subgraph of G whose
vertices are in either G1 or G2, but again do not create multiple edges if G1 and G2 are not
edge-disjoint. Similarly, we define G1 ∩ G2 as the subgraph of G whose vertices and edges
are in both G1 and G2.

Exercise 6 Which of the graphs in figure 6 are subgraphs of other graphs in the figure?

With regard to combining two graphs there are several possible useful ways to do this as
described below and shown in figure 7:

• Union: G1 ∪G2 has vertex set V1 ∪V2 and its edge set includes all the edges in G1 and
G2, and no others.

• Join: G1 +G2 is simply formed from G1 ∪G2 by adding an edge from every vertex of
G1 to every vertex in G2 (and hence vice-versa).
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Figure 7: Examples of union, join, product and corona

• Product: G1 × G2 has vertex set {v1, v2 : v1 ∈ V1 and v2 ∈ V2}. If u = {u1, u2}
and v = {v1, v2} are vertices of G1 × G2 then u and v are adjacent if u1 = v1 and
u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).

• Corona: G1 ◦ G2 is obtained by taking one copy of G1 with n1 vertices and n1 copies
of G2 and joining the ith vertex of G1 to every vertex in the ith copy of G2. Note that
G1 ◦G2 is not necessary the same graph as G2 ◦G1.

1.6 Complements

Recall that the smallest graph on n vertices has no edges. This is the null graph on n vertices
and was denoted by Kn. This notation is chosen because it is the complement of Kn. In
general, for a graph G:

V (G) := V (G)

E(G) := {ab : a, b ∈ V (G), ab 6∈ E(G)}

Thus in G the valency of v will be related to the valency in G using (n− 1)− ρ(v). The
complement is a useful operation in several ways; for instance the number of graphs with n
vertices and m edges can be easily proven to be the same as the number with n vertices and
n(n−1)

2
−m edges. Note also that the complement of a regular graph is also regular.

Exercise 7 What is the complement of Ki,j?

Thus the complement of G1 in figure 8 is G2 (and vice versa, of course). However, the
graph H has, as its complement, itself. Such a graph is called self-complementary.

This is thus the only self-complementary graph on four vertices since any such graph
must have three edges and those in figure 8 can be shown to be the only graphs on four
vertices with three edges.

Theorem 1.3 If G is a self-complementary graph then |V (G)| ≡ 0, 1 mod 4.
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Figure 8: Small Complementary Graphs

Proof: Suppose |V (G)| = n. Then, if G is a self-complementary graph, since Kn has
n(n−1)

2
edges, G must have n(n−1)

4
edges, and this is integral if and only if n is congruent to

zero or one modulo four. �

Exercise 8 Show that a self-complementary graph cannot have a vertex connected to either
all or none of the other vertices.

In investigating self-complementary graphs it is necessary to consider which vertices will
map to which others in the complement. The basic fact for any self-complementary graph is
that it must have a “balanced” valency sequence (so that if you reverse the sequence and add
it to the original you get (n-1, n-1, . .,.n-1). For instance, figure 9 shows a self-complementary
graph on nine vertices.
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Figure 9: A Self-Complementary Graph on Nine Vertices

It has valency sequence (5, 5, 5, 5, 4, 3, 3, 3, 3) and so, in the isomorphism between G and
G, the vertex of valency 4 must map to itself and each vertex of valency 5 must map to one
of valency 3 and vice-versa. In particular, the subgraph induced by the vertices of valency
5 in G must be the complement of the subgraph of G induced by the vertices of valency
3. Even with these conditions, it is still hard to find the right way to join the vertices of
valencies 5 and 3 together, but it is possible, in at least one way. One suitable isomorphism
is shown in table 1.
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Vertex in G Vertex in G Neighbours in G Neighbours in G
a e b,d,f,h,i a,c,f,h,i
b f a,c,e,g,i b,d,e,g,i
c g b,d,f,h,i a,c,f,h,i
d h a,c,e,g,i b,d,e,g,i
e d b,d,g b,f,h
f a a,c,h c,e,g
g b b,d,e d,f,h
h c a,c,f a,e,g
i i a,b,c,d e,f,g,h

Table 1: An isomorphism for the self-complementary graph above

1.7 The Reconstruction Conjecture

This is one of the most tantalizing conjectures in modern graph theory. Posed just fifty years
ago by Ulam it has been proven for many classes of graphs, including both regular graphs
and trees (which we shall soon be meeting). It can be posed in several different ways, but the
following is the one from which the name arises: If G is a graph with vertex set {v1, . . . , vn}
then the deck of G, D(G), is the set of n graphs {G− vi : 1 ≤ i ≤ n}. A legitimate deck is a
deck which can be obtained from some graph G.

Conjecture 1.4 Given a legitimate deck it is possible to reconstruct G if n ≥ 3.

Various properties of G can be proven to be reconstructable, such as the number of vertices
(just count the number of cards). To find the number of edges we can use a special case of
a result known as Kelly’s lemma:

Lemma 2 If H ⊂ G and H has less vertices than G then the number of different copies of
H in G is equal to the number of copies of H in D(G) divided by |V (G)| − |V (H)|.

Corollary 1.5

|E(G)| =
∑

X∈D(G) |E(X)|
|V (G)| − 2

Exercise 9 Which graph has the deck in figure 10?

u u
u

u uu u
u u uu

u
Figure 10: The deck of a graph
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2 Walks, paths and trails.

2.1 Introduction

A walk W of length l (l ∈ N) is a sequence of l + 1 vertices and l edges

a0, e1, a1, e2, . . . , an−1, en, an,

where ei is an edge joining ai−1 and ai (1 ≤ i ≤ n). W connects a0 to an and is designated a
pseudopath if no edge occurs more than once in it. If, in addition, no vertices are repeated
in W then it is a path. If n ≥ 1 and a0 = an then W is a closed walk, a pseudocircuit if no
edge is repeated and a circuit if no vertices from a1 to an are repeated.

Two vertices in a graph G are connected if there exists some walk (or equivalently a
path - exercise?) between them. Clearly connectedness is an equivalence relation (v ∼ v,
v ∼ w ⇒ w ∼ v and v ∼ w and w ∼ u ⇒ v ∼ u) and so the equivalence classes formed
(including the edges between these vertices) we shall call the components of G. If G has just
one component then we say that it is connected.

The distance between two vertices u and v in a component of G is defined as the length
of a shortest walk from u to v and is written d(u, v). Such a walk is called a u− v geodesic.
The distance between two vertices in different components is customarily defined as ∞. We
define the diameter of G as the length of any longest geodesic. Similarly, the girth of a graph
G is the length of a shortest circuit in G and the circumference is the length of a longest
circuit. Both terms are defined as ∞ if G contains no circuits.

2.2 Bipartite Graphs

We now prove a theorem providing an alternate definition of a bipartite graph:

Theorem 2.1 A graph G is bipartite if and only if it contains no closed walk of odd length.

Proof: Suppose that G is bipartite with partite sets A and B: any closed walk W in G
must start in one set, say A, and then go to B, and then back to A, and so on. Thus, since
W is closed it must end in the set in which it started, and this involves transversing an even
number of edges. Thus W cannot have odd length.

Now suppose that G contains no closed walk of odd length. We use induction on the
number of edges in G, the inductive statement being Pk : if Gk is a graph with k edges with
no closed walk then Gk is bipartite. It is easy to see that P0, P1 and P2 are true since Gk in
these cases is always bipartite and there are no closed walks of of odd length.

So let Gm be a graph with m(≥ 3) edges, and no closed odd walk and suppose that Pm−1

holds. We choose any edge vw of Gm and consider Gm−1 := Gm−uv. Gm−1 has m−1 edges
and, since the deletion of an edge cannot create any new walks, no closed odd walk. Hence,
by the induction hypothesis, Gm−1 is bipartite and has partite sets A and B, say.

Case i). v ∈ A and w ∈ B, say. We can add the edge vw to Gm−1 and we still have
a bipartite decomposition, and so Pm is true.

Case ii). v, w ∈ A, say. We note that there cannot exist a walk W between v
and w in Gm−1 since W would be of even length as Gm−1 is bipartite. This would imply
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that, in Gm, there would be a closed path of odd length, using vw and W , contrary to our
supposition. Thus v and w are in different components of Gm−1 and so we label the set of
vertices in A which are in the same component as v as A′. The remaining vertices in this
component we group into a set B′. The vertices in both of these sets are all non-adjacent as
Gm−1 is bipartite. Thus we can divide the vertices of G into the two sets A′′ := A ∪ B′ and
B′′ := B ∪ A′, and these give us a situation as in case i) since v ∈ B′′ and w ∈ A′′. �

2.3 Trees and Connectedness

A cut-vertex (respectively cut-edge) of a component C is a vertex (edge) in C whose removal
disconnects C. For instance, in figure 11, v, w and x are all cut vertices and e and f are cut
edges.

u
u

u

u
u

u

u
e

f
x

v w

Figure 11: Cut Vertices and Edges

A graph G is k-connected (k ≥ 1) if |V (G)| ≥ k + 1 and G is connected and cannot be
disconnected by the removal of any set of k − 1 (or fewer) vertices. We note that, outside
this definition, disconnected is equivalent to 0-connected and Kn is better than n-connected
since it can never be disconnected.

A connected graph with no circuits is called a tree. A graph in which all the components
are trees is called, originally enough, a forest.

Theorem 2.2 A (finite) graph with no isolated or terminal vertices has a circuit, and so is
not a tree.

Proof: Suppose G is such a graph. Let P be a path in G of maximal possible length,
say P : a0, e1, a1, . . . , an−1, en, an (there must exist such a path since G is finite). Since every
vertex has valency at least two, an must be adjacent to some other vertex than an−1 in G,
and, moreover, it must be one of the vertices in P (ai, say) since otherwise P would not be
of maximal length. But then there exists a circuit ai, ei+1, . . . , en, an, e, ai. �

Exercise 10 (G.A. Dirac, 1952) A finite graph G which has ρ(v) ≥ d ≥ 2 ∀v ∈ G has a
circuit of length at least d+ 1.

Exercise 11 If T is a (finite) tree then |V (G)| = |E(G)| + 1. (Hint: use induction and
theorem 2.2)

It is possible to characterise trees in a number of different ways: these seven statements
can be proved to be equivalent to each other.
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1. G is a tree on n vertices.

2. G has no circuits and n− 1 edges.

3. G is connected and has n− 1 edges.

4. Every pair of vertices in G is connected by a unique path.

5. G is connected and deletion of any edge disconnects it.

6. G is circuit-free but addition of any edge creates a circuit.

7. G is connected but addition of any edge creates exactly one circuit.

2.4 Spanning Trees

A spanning subgraph of a graph G is a subgraph which includes all the vertices of G. A
spanning tree of a graph G is a spanning subgraph which is a tree. For example, the diagrams
in figure 12 show four different spanning trees for the same graph:eu u

u u u
u u

u

u

eu u
u u u

u u

u

u

eu u
u u u

u u

u

u

eu u
u u u

u u

u

u
Figure 12: Four spanning trees of a graph (shown in bold)

Lemma 3 Every finite connected graph has a spanning tree.

Proof: Suppose that W is a closed walk in G (if no such walk exists then G is already
a tree). Remove one edge from W (so that G remains connected) and we have a graph G′

with one less edge than G. Obviously, we can continue this process until we have a tree. �

Corollary 2.3 The number of edges removed from a connected graph G to obtain a spanning
tree is the same whichever spanning tree is formed and is equal to γ(G) := |E(G)|−|V (G)|+1,
the circuit rank of G.

It is sometimes useful to associate number with edges which indicate “cost” of using that
edge. Usually this will be something like the length of a road or the difference between the
genes of two species. In this case it may be useful to find a spanning tree which has the
smallest sum of numbers:

Theorem 2.4 Kruskal’s algorithm (the greedy algorithm) Let G be a connected graph with n
vertices and a cost associated with each edge of G. The following gives a least cost spanning
tree for G:

14



i) let e1 be an edge of least cost c(e1)

ii) having chosen i edges e1, · · · , ei, choose a new edge ei+1 of smallest cost so long as it
doesn’t complete a circuit in G using the edges e1, . . . , ei.

Repeat ii) for 2 ≤ i ≤ n− 2.

Proof: This process gives a spanning tree T of G since it is connected, it has no circuits,
has n− 1 edges and n vertices. We still have to prove that T is a spanning tree of minimum
cost. To do this we assume that S is another spanning tree with a smaller cost than T and
achieve a contradiction. Let ek be the first edge in T which is not in S, so that e1, . . . , ek−1

are edges both in T and S. Since S is a tree, adding ek to S produces a unique circuit
C (as in (f) above), containing ek. But C must contain an edge e which is not in T , as
otherwise T would not be a tree. If c(e) < c(ek) then we would have chosen e before ek when
forming T since the edges e1, . . . , ek−1, e are all in S and so do not contain a circuit. This
contradicts what would actually have happened when carrying out the algorithm so we can
assume c(e) ≥ c(ek).

Thus we can consider the graph S ′ := {S∪ek}−e which is also a spanning tree of G, but
has at most the same cost as S but has one more edge in common with T than S. We can
then repeat the process with S ′ and then S ′′ etc., each time increasing the number of edges
in common and keeping less cost than T . But this process must terminate (when there are
no edges in S(p) different from those in T , i.e. S(p) := T !). But we then have

c(T ) > c(S) ≥ c(S ′) ≥ . . . ≥ c(S(p)) = c(T ), (1)

which is a clear contradiction. Hence T is a minimal spanning tree. �

Example:
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bf 2 1st cf 5 5th
cd 2 2nd ad 5 not
af 3 3rd bc 6 not
ef 3 4th be 7 not
ab 4 not ef 9 not
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2.5 Eccentricity

We define the eccentricity of a vertex in a (connected) graph G as follows:

ε(v) := max{d(u, v) : u ∈ V (G)}.

Thus it is the distance to the vertex furthest away from v. The vertices with the smallest
eccentricity (the radius of G) in G we group together as the centre of G, and call the vertices
central. Similarly, the largest eccentricity in a graph is the diameter and all vertices with
this eccentricity are called peripheral vertices and they are grouped into the periphery of the
graph. An eccentric vertex for a vertex v is one at distance ε(v) from v.

The eccentricities of the vertices in a graph are another useful tool in discriminating
between graphs which may look identical but are not isomorphic. Usually, when finding the
eccentricities of a graph, we write the numbers representing the eccentricity of a vertex by
the vertex. In order to find this number it is simply a matter of counting the lengths of the
shortest paths to each of the other vertices in the graph. Note that any peripheral vertex
must, by definition, have a second vertex at distance equal to diam(G) and hence there are
always at least two vertices in the periphery.

u u u u
u u

3 3

3
2

22

Figure 13: The eccentric labeling of a graph

In figure 13 we have six vertices, three of which have eccentricity 2, while the remaining
three have eccentricity 3. This can be verified by taking any particular vertex, and then
marking which vertices are adjacent to it, then taking this set of vertices, and marking all
its neighbours. When there are no more vertices unmarked, the number of steps taken is the
eccentricity of the vertex. Note that the centre of the graph in figure 13 is K3. For trees we
can prove there are only two different centres:

Theorem 2.5 The centre of a tree is either isomorphic to K2 or K1.

Proof: We shall proceed by induction. For the small trees K1 and K2 the theorem is
clearly true, and these are the only trees with no internal vertices. For each vertex v in
a tree T only an end vertex can be an eccentric vertex since, in a tree, any longest path
must end in an end vertex. We perform a “pruning” operation on T to form a sub-tree T ′ as
follows: remove every end vertex in T , together with its edge. This leaves a graph with fewer
edges, and the eccentricities of the remaining vertices must decrease by exactly 1, since all
the eccentric vertices were removed. But this leaves the centre of the tree unchanged and so
the centre of T ′ is the centre of T . We can repeat this operation until either K1 or K2 is left
and this graph is the centre of T , as per the theorem. �
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2.6 Matrices and graphs.

We now introduce two matrices which can be used to represent a graph G with n vertices
a1, . . . , an and m edges e1, . . . , em: the adjacency matrix of G is a n × n matrix A where
Ai,j is the number of edges between ai and aj. the incidence matrix of G is a m× n matrix
M with Mi,j the number of times ai and ej are incident. Note that the adjacency matrix
is normally the smaller of the two and so is the one most usually used to store graphs in
computers for example. In addition, both matrices have entries which are all either zero or
one. Note that we can prove the relation MMT = A + D, where D is an n × n diagonal
matrix with Di,i = ρ(ai).

Theorem 2.6 The number of walks of length k from ai to aj is the (i, j)th entry of Ak.

Proof: Clearly it is true for k = 0 (A = I, and the only walks of length 0 are the trivial
ones from ai to itself for all i) and k = 1 (the only walks of length one use just one edge
of G). We shall now use induction on Pk (the statement of the theorem). Assuming Px is
true we consider Ax+1 = AAx. By the induction hypothesis, the (i, j)th entry of Ax is the
number of walks of length x from ai to aj. But, by the rules of matrix algebra, the (c, d)th
entry of Ax+1 is

∑
Ac,yA

x
y,d. This is equivalent to Px+1 since any path of length x + 1 from

ac to ad must first go to a neighbouring vertex ay of ac (which it can do in Ac,y ways) and
then, from ay, there are Ax

y,d paths of length x to ad. All such paths are necessarily distinct.
�

We finish this round of definitions with a summary of the names we shall be using for
graph-theoretical objects in this course. Note that many different terms for the same thing
are used in books and so it is important to know what the particular author means in every
case. For instance, what we shall be calling a pseudopath, Bondy and Murty call a trail.

vertex point, node, junction
edge line, arc

valency degree, order
terminal vertex pendant vertex

bipartite even, bichromatic
walk edge-sequence

pseudopath chain, trail, path
path simple path, chain, arc, way

pseudocircuit cyclic path, circuit, closed path/trail
circuit simple circuit, cycle

cut-vertex point of articulation
cut-edge bridge, isthmus
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3 Planarity and Colouring.

3.1 Introduction

A graph is planar if it has a proper embedding (one in which no edges meet except at vertices)
in the plane (or equivalently, the sphere). For example we have the two embeddings of K4

in figure 14: the right hand one is a proper embedding but both graphs are planar (since
they are isomorphic).
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Figure 14: Two drawings of K4

We note that if G is a planar graph then the area of the plane is then split up into regions
which are bounded by the edges of G. We shall call these regions faces. For instance, in
figure 14 there are four faces, the three triangles inside, plus the outside face. In fact, for
any planar graph the number of faces is immediately known, thanks to the following result:

Theorem 3.1 (Euler, 1752.) If a plane graph G has n vertices, m edges and f faces and c
components then n−m+ f = 1 + c.

Proof: Consider the graph G0 which has the vertices of G but no edges: the theorem
is true for G0 since in this case c = n, f = 1 and m = 0. We now use induction on k, the
number of edges in Gk, supposing the theorem is true for Gk−1. Add an edge e (which is not
already in Gk−1) from G to Gk−1 to get Gk. There are two cases to consider:

i) e connects two vertices of Gk−1 which did not have a path between them. In this case c
is decreased but m is increased and f remains the same and so the statement is true
for Gk too.

ii) e connects two vertices of Gk−1 which did have a path between them. This operation
will divide the face containing both the vertices and so f is increased but c remains
the same and so, again, the statement is true for Gk too.

�
Using the concepts we can also get relations between the number of vertices and edges

as follows:

Lemma 4 If G is a plane graph with m = |E(G)| ≥ 2 then 2m ≥ 3f , where f is the number
of faces in G as usual.
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Proof: Every face of G must be bounded by at least three edges. Letting x be the sum
of the number of edges bounding each face of G we get x ≥ 3f . But, since this sum must
count every edge in G exactly twice, x = 2e, and hence we get the required relation. �

Corollary 3.2 Let G be a plane graph, G 6' K1 or K2, with n = |V (G)|. Then m ≤ 3n− 6.

Proof: By lemma 4 we see that 2m
3
≥ f . Using theorem 3.1 we see n−m+f = c+1 ≥ 2

(as c ≥ 1) and so

n−m+
2m

3
≥ n−m+ f ≥ 2

⇒ n− m
3

≥ 2

⇒ m ≤ 3n− 6.

�
There is an exercise in the problems which generalizes this result to the following:

Theorem 3.3 If the length of the smallest circuit in a graph G is g, m ≤ g
g−2

(n− 2).

Finally, we can deduce something about the valencies in a plane graph:

Corollary 3.4 Any plane graph has a vertex of valency at most 5.

Proof: We suppose there exists a graph G in which there are no vertices of valency 5
or less. Then we can deduce that the total valency is at least 6n and so m ≥ 3n. This
contradicts corollary 3.2 which states m ≤ 3n− 6. �

3.2 Planarity Testing

Using corollary 3.2 we see that, since K5 has 5 vertices and 10 edges, it cannot be planar.
Similarly, K3,3 has g = 4, n = 6 but m = 9, contradicting theorem 3.3. Hence, neither
K5 and K3,3 can be drawn in the plane and, in fact, these are the two smallest non-planar
graphs and are shown in figure 15.u
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Figure 15: K5 and K3,3

Before we completely characterize non-planar graphs we must first make one definition:
Two graphs are homeomorphic if they are isomorphic up to vertices of valency two. That
is, we can either add or remove vertices (but not the edges adjacent to those vertices) of
valency two from one graph and get the other. Two graphs homeomorphic to each other are
shown in figure 16.
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Figure 16: Two graphs homeomorphic to each other

Theorem 3.5 (Kuratowski, 1930) A finite graph is planar if and only if it contains no
subgraph homeomorphic to K5 or K3,3.

The proof of this theorem is quite involved and so it shall be left unproven. Thus, in
order to find a whether or not a graph is planar it is a matter of either getting a planar
embedding or finding such a homeomorphic subgraph, but in practice, it is rare to find a
non-planar graph without K3,3 as a homeomorphic subgraph so it normally suffices to check
for that once you are satisfied that no planar embedding exists.

Drawing Planar Graphs

So we think that the graph in figure 17 might be planar. We want to draw it as a planar
graph but first we need to define a couple of new terms:

u
u
u

uu

uu
u uB1

B3

u u
u

B2

Figure 17: A possibly planar graph and its bridges

A bridge B of a subgraph H of G is either an edge of G which is not in H, or a component
of G−H together with all the edges joining it to G.

The vertices which are in V (B) ∩ V (H) are called the vertices of attachment. We say
that B is compatible with a face F of H if all of its vertices of attachment come from the
border of F . For example, in the graph in figure 17 H has three faces. B2 is only compatible
with the outer face whereas the other two bridges are also compatible with one of the inner
faces.
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We have failed to find a Kuratowski subgraph, so we proceed to apply algorithm 1.

Algorithm 1 1. Choose a circuit in G as big as possible and draw it as a polygon in the
plane.

2. If H is the graph we have so far in the plane and H 6∼= G then find a bridge B compatible
with one face of F . If no such B exists choose any bridge for B and let F be one of
its compatible faces.

3. Choose a path in B between two of its vertices of attachment and draw it in F then
return to the previous step.

If we follow this algorithm properly then we will either find a plane embedding (and it
just remains to show that this graph is the same as the one we started with) or we find
that the algorithm breaks down (and so we have to assume it is non-planar and go back to
looking for Kuratowski subgraphs, using the information gleaned from the algorithm).

3.3 Topological Graph Theory

We also briefly divert towards topology, in considering other surfaces (other than the plane)
that we can embed graphs upon. Technically these are are compact connected (perhaps
non-) orientable manifolds but we shall just refer to them as surfaces. For instance, from
the sphere we have its closest relation, the torus (doughnut) which can be imagined to just
be a sphere with a hole all through it. From this we can consider the double-torus, treble
torus, etc., to just be the sphere with however many holes in it.

Alternatively we can also have non-orientable surfaces such as the projective plane (which
can be thought of as a Möbius cylinder) and the Klein bottle. These objects can be repre-
sented in the plane using the “arrowed polygon” notation shown in figure 18. You have to
imagine the polygon as a sheet of paper and then you join the edges of the piece of paper
which have matching arrows. This can be seen for the torus by doing it, but it is impossible
to create the projective plane in three dimensions...

The Projective Plane The Torus

Figure 18: Plane Representation of Surfaces

The arrows on the sides of the polygons represent in what orientation the opposite sides
are identified, in the sense that an edge hitting the bottom edge of the torus would continue
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from the point vertically above it on the top edge. For the projective plane the same happens
relative to the arrows, which coincides with reappearing at the opposite side of the circle.

For example, figure 19 shows embeddings of K5 on the torus and K3,3 on the projective
plane

u
u u

uu e u
u ue

e

Figure 19: Some embeddings on higher surfaces

Exercise 12 Embed K5 on the projective plane.

For each surface S there is a constant χ = χ(S), the Euler-Poincaré characteristic, and
it is defined as the number such that any connected graph embedded in S (such that every
face is homeomorphic to an open disc in the plane) satisfies

n−m+ f = χ.

The sphere/plane has χ = 2, torus χ = 0 and the n-torus χ = 2− 2n. The projective plane
has χ = 1 and the Klein bottle χ = 0 and this sequence continues similarly. We proved this
relation for the plane in theorem 3.1.

Lemma 5 Let G be a plane graph that is d-regular, such that every face has k edges bounding
it. Then

nd = |V (G)| × d = fk = |E(G)| × 2 = 2m.

Proof: The total valency of G is nd, and is equal to 2m as in section 1. As in lemma 4
this again counts every face each edge is a part of the boundary of and so must also equal
fk. �

Theorem 3.6 There are exactly five regular polyhedra.

Proof: Any polyhedron can be seen to have a representation as a planar graph G since
its projection onto a sphere can be transferred simply to the plane. Thus G must be d-regular
and each face has k edges bounded, where d and k are integers. We can see that d ≥ 3 since
d = 1 gives only the graphs xK2 and d = 2 implies that G is the circuit Ck neither of which
are polyhedra. As before k ≥ 3 for all d since all faces must be at least triangular. Since G
is connected we have n −m + f = 2 and by lemma 5 we have nd = 2m and fk = 2m and
so, since m, d, k ≥ 0, �

x =
1

d
− 1

2
+

1

k
=

1

m
≥ 0.
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Table 2: The Regular Polyhedra

d k x m n f name

3 1
6

6 4 4 tetrahedron
4 1

12
12 8 6 cube

3 5 1
30

30 20 12 dodecahedron
6 0 ∞ ∞ ∞ (hexagon-tiling)
> 6 < 0 - - - no polyhedra
3 1

12
12 6 8 octahedron

4 4 0 ∞ ∞ ∞ (square-tiling)
> 4 < 0 - - - no polyhedra

5 3 1
30

30 12 20 icosohedra
> 3 < 0 - - - no polyhedra

6 3 0 ∞ ∞ ∞ (triangle-tiling)
> 3 < 0 - - - no polyhedra

3.4 Chromatic Number and Polynomials

Given any graph G we define its chromatic number as the minimum number of colours
required to give each vertex of G a colour in such a way that no two adjacent vertices share
the same colour. We denote this graph theoretical constant as χ(G). We can easily evaluate
it for most of the basic families of graphs such as Kn, Kn , trees, Cn: χ(Kn) = n since every
pair of vertices is adjacent and so all vertices need a new colour; χ(Kn) = 1 because no two
vertices are adjacent; χ(T ) = 2 since trees are bipartite, and two colours are needed unless
T = K1; χ(Cn) = 2 or 3 depending on whether n is even or odd.

Theorem 3.7 Any planar graph is five colourable; i.e. if G is planar then χ(G) = 5.

Proof: We prove that any triangulation can be coloured with a certain number k of
colours then, since any planar graph G can be turned into a triangulation T (by adding
edges across faces), we can do the following: colour T with k colours and then remove the
edges added to leave G, and the colouring thus formed is still a proper one. We use induction
on the number of vertices of the graph, supposing that every planar graph with less than n
vertices is 5-colourable. This is certainly true for any planar graph with less than six vertices
so we have the base of the induction.

By corollary 3.4 we know that there must exist some vertex v in G with valency at most
five. If we consider the graph G− v this has a 5-colouring by the induction hypothesis and
so we take any such colouring. If ρ(v) ≤ 4 then it has at most four neighbours and these
can have at most four of the five colours available so we can simply replace v and colour it
with any colour which is not used by its neighbours. We can proceed similarly if ρ(v) = 5
but one colour is not used in colouring v’s five neighbours. Thus we just need to consider
the case in which we have all five colours for v’s neighbours and so the situation is as shown
in figure 20

23



u
u

u

u
uuv

R

Y

BG

P

Figure 20: The difficult case in the five-colour theorem

To resolve this problem we consider subgraphs of G−v induced by two of the five colours
and the components of these graphs are called Kempe chains. In figure 20 we first consider
the red-green induced subgraph and consider whether the red and green vertices shown are
in the same Kempe chain. If they are not then we swap the colours in the chain involving
the red vertex, red for green and vice versa. This operation still leaves a valid colouring but
now v has no red neighbour and so can be coloured red in G, giving it a proper colouring.

If there is a red-green chain joining the red and green neighbours of v then we consider
all blue-purple chains. This induced subgraph cannot have one component containing both
neighbours of v since G − v is planar and the red-green chain splits the graph into two
separate components. Thus we can change one of the two chains as before to allow v to be
coloured purple. �

Chromatic Polynomials

We define the function P (G, t) as the number of ways in which one can colour the vertices of
G using t colours, where each vertex is labeled so that any problems with isomorphism are
suppressed. For instance, P (K3, 2) = 0 but P (K3, 3) = 6. It is first necessary to establish
that this function is indeed a polynomial:

Theorem 3.8 If |V (G)| = n then P (G, t) is a monic polynomial of degree n.

By inspection we can note that P (Kn, t) = t!
(t−n)!

(since we have t colours available for the
first vertex, the next can choose any one of the t− 1 others, and this continues since every
vertex is adjacent to every other. Similarly, P (Kn, t) = tn since every vertex can have any of
the t colours. For trees we have P (T, t) = t(t− 1)n−1 since the first vertex can have any of
the t colours and we choose the colours of the remaining vertices recursively by considering
neighbours of those already coloured. We always have t− 1 colours to choose from since any
vertex has exactly one previously coloured neighbour as there are no circuits.

In order to calculate chromatic polynomials there are several very useful more advanced
techniques which we shall not prove in this course:

1. If G = G1 ∪ G2 (in that every edge of G is in either G1 or G2 or perhaps both) and
G1 ∩G2 = Ki then we use Complete Intersection:

P (G, t) =
P (G1, t)P (G2, t)

P (Ki)
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2. If e is an edge of G then we have Deletion-Contraction:

P (G, t) = P (G− e, t)− P (G ◦ e, t)

or equivalently, if there is no edge e, Addition-Identification:

P (G, t) = P (G+ e, t) + P (G ◦ e, t)

3. Finally, if v is adjacent to every vertex of G then

P (G, t) = t× P (G− v, t− 1)

Exercise 13 Find the chromatic polynomials of some of the graphs in the course

4 Eulerian and Hamiltonian circuits.

4.1 Eulerian circuits

An Euler-circuit (Eulerian pseudocircuit) of a graph G is a pseudocircuit that covers the
whole graph; i.e. one which includes every edge of G (exactly once) and every vertex (prob-
ably more than once each). We say that G is Eulerian if it has an Euler-circuit or it has
only one vertex; it is then clearly finite and connected.

Theorem 4.1 (Euler, 1736) A finite connected graph G is Eulerian if and only if every
vertex of G has even valency.

Proof: “only if” is clear: if a vertex occurs k times in the pseudocircuit then its valency
is 2k.
“if”: Suppose that every vertex of G has even valency. The result is obvious if |V (G)| = 1;
so suppose that |V (G)| >= 2. Let P , connecting a to b, be a pseudopath of maximum length
in G. If b 6= a then P must use an odd number of edges at b, and so there must be an unused
edge at b; this edge can be used to increase the length of P , a contradiction. Thus b = a and
P is actually a pseudocircuit. We prove that P is actually an Euler-circuit of G.

Let cd be an edge in G that is not in P : since G is connected there is a path from c to
a, say, and the first vertex of P along the path, say e, is incident to an edge of G not in P .
Let Q be a maximal length pseudocircuit from e to f , using only edges not in P . By the
same argument as before, f = e and Q is a pseudocircuit. We can thus add Q to P in the
obvious way to form a longer pseudocircuit than P . This contradiction shows that no such
edge as cd can exist and so P is an Euler-circuit of G. �

4.2 Algorithms for Finding Euler-Circuits

Algorithm 2 Fleury’s algorithm (1921). Let G be an Eulerian graph. Then the following
procedure is always possible and will lead to the construction of and Eulerian pseudocircuit
of G.
Start out from any vertex and proceed along the edges in any manner subject to the following
rules:
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(a) erase the edges as they are used, along with any vertex that would become isolated if it
were not erased.

(b) never use an edge if its removal at that moment would disconnect the graph (except for
isolating the initial vertex of the edge).

In short: “erase the edges as you go along and don’t disconnect other edges”.

4.3 Hamiltonian Circuits

A Hamiltonian circuit in a graph is defined as a circuit which includes every vertex in the
graph. This may seem a similar concept to Euler-circuits but, as we shall see, it is much
harder to even tell whether or not a graph has a Hamiltonian circuit (in which case we say
it is Hamiltonian), let alone finding one. However, we can say some things:

Theorem 4.2 A graph with a cut-vertex is not Hamiltonian

Proof: Suppose we have a cut-vertex v which splits a graph G into two parts, G1 and
G2. If G is Hamiltonian there exists a cycle C including each vertex in G. We suppose C
exists and trace it around G: without loss of generality we can start in G1. We move along
C in G1 until we come to v; since v is the only vertex in both G1 and G2 we must now
cross into G2 as otherwise we can never include any vertex in G2 in C. But now, in order
to return the the vertex with which we started, we must cross back into G1 again, and that
would mean using v again, which is impossible as C goes through every vertex in G exactly
once. Thus C cannot exist and so G is not Hamiltonian. �

In practice, we normally find that a graph is Hamiltonian by finding a Hamiltonian circuit
in it. This can be done by trial and error, guided by a couple of small observations and a
little inside knowledge:

Firstly, we know that any vertex of valency 2 has to imply that both of its incident edges
are used in any Hamiltonian cycle. This then gives us information about which edges its
neighbours use. Similarly to this, we can try certain pairs of edges at vertices of valency
higher than two and then deduce from this guess, restrictions on which edges can be used
at several other vertices. We normally show these restrictions by the use of markers called
transitions, which are indicated as curved of coloured lines.

For instance, we try to find a Hamiltonian cycle in figure 21:
the two transitions at the vertices of valency two are marked. We use the symmetry of the
graph to note that x and its mirror image can’t both use the same type of transition (the
ones inside form a 4-cycle, the ones outside form a 6-cycle). Therefore, we can assume x
uses the inside transition and goes to y where the other vertex uses the other transition and
goes to z via the other vertex of valency 2. From here it is an easy matter to deduce that
this graph is indeed Hamiltonian, the rest of the cycle traveling around the triangle from y
to z.

To prove a graph non-Hamiltonian we proceed along similar lines; for instance, consider
the graph formed from figure 21 by deleting the edge ab. We now have transitions at both
of these vertices and these transitions already form a 6-cycle. Since transitions must form
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Figure 21: Transitions in a graph

only an n-cycle we know that it is now non-Hamiltonian. More complicated cases are dealt
with by using symmetry and breaking the proof down into cases.

Exercise 14 Prove whether or not the Petersen graph is Hamiltonian.

The following theorem is a sufficient condition, but any graph which satisfies the condition
has so many edges that it is almost always much easier to find a Hamiltonian circuit just by
tracing randomly through the graph:

Theorem 4.3 Let G be a graph with n vertices. If, for any two non-adjacent vertices u and
v are such that ρ(u) + ρ(v) ≥ n then G is Hamiltonian.

Taking this idea further we define the closure of a graph to be the graph formed by adding
in an edge between two vertices of a graph such that they satisfy the conditions in theorem
4.3, and repeating this operation until it is impossible to continue. It has been proved that
this graph is unique, and we call it the closure of G, C(G), and it is now possible to state a
known result:

Theorem 4.4 G is Hamiltonian if and only if C(G) is.

Although this result now gives us a fairly good method of determining whether a graph
is Hamiltonian there are some problems with graphs in which G ∼= C(G) and so the theorem
gives us no new information in this case. Normally, however, the closure of a Hamiltonian
graph will turn out to be a complete graph or some other graph easily seen to be Hamiltonian.

We conclude the course with the statement and demonstration of a powerful theorem for
investigating whether planar graphs are non-Hamiltonian. Let C be a Hamiltonian circuit
in a graph G and let ai denote the number of faces of size i outside C and bi the number of
size i inside.
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Theorem 4.5 (Grinberg, 1968)

∞∑
i=3

(i− 2)(ai − bi) = 0.

To apply this theorem we assume the existence of a Hamiltonian circuit and then consider
the equation and whether it can have a solution in integers. For instance, if there were a
Hamiltonian graph with faces of size 5, 8 and 7 but only one of size 7, we can immediately
see that we must have

3(a5 − b5) + 6(a6 − b6) = 5(b7 − a7).

But the left hand side clearly is divisible by three whereas the right cannot be since it is
equal to either 5 or -5. Hence no such Hamiltonian graph can exist.

Sometimes, though, Grinberg’s theorem gives us false hope; it can give rise to a set of
soluble equations but the graph itself is not Hamiltonian so that the theorem cannot be used
to check Hamiltonicity surely.

Exercise 15 Construct a non-Hamiltonian planar graph which has Grinberg solutions.

4.4 Matchings and Independent Sets

We define two more graph theoretic parameters in this part of the course; the matching
number of G is the maximum number of vertex disjoint edges it is possible to fit into G.
Similarly, the independence number of G is the maximum number of non adjacent vertices
it is possible to fit into G. The independence number of G is denoted by α(G).

u u
u

e e

e

e

e

Figure 22: Independence and Matching sets

For instance, in the graph in figure 22 we have independence number of 5, shown by the
hollow circles, and matching number 3, as shown by the bold lines. That these values are
no more is quite an intricate task to explain, as was the case when we considered chromatic
number and connectivity. In this case we try as follows:

If the matching number was 4 then every vertex in the set would have a bold edge in it.
In particular, the two bottom-most vertices would need edges covering them and these edges
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would then have to match the two vertices above them. This leaves 4 vertices to match with
two edges, but one is isolated from the other three, making this impossible.

Similarly, we suppose the independence number is 6. This would mean that only two of
the vertices would not be in the set, and since there is a triangle in the graph, at most one of
these three vertices must in any independent set. This implies that all the other 5 vertices
must be in a set but it is easy to see that set would not be an independent one.

In general it is much easier to calculate the matching number thanks to this theorem
which involves the concept of an alternating path, which is defined as a subgraph of the
graph which is a path whose edges are in the matching set, then out, then in, etc.

Theorem 4.6 A matching is maximal if it contains no alternating path with non-matched
ends.

Proof: If such an alternating path exists then we simply switch the roles of the edges in
the path and leave the other edges alone and thus generate a matching which is larger than
the original one. �

It is possible to prove that this theorem can be stated as “if and only if” but time shall
probably prevent our covering this topic. This theorem can be used to generate an algorithm
to find a maximum matching in any graph.

Edge Covering Sets

It can be noted that, in figure 22, the filled vertices form a set which has a different property;
every edge in G is incident with at least one of these vertices. Such a set is called an edge
cover and a smallest such set is a minimal edge covering set.

Theorem 4.7 The size of a minimal edge covering set is n− α(G).

Proof: Suppose we have a set of vertices C which is an edge covering set which is of
size larger than n− α(G). Then the set I := V (G)−C is an set of vertices of size less than
α(G). We now prove that I is independent. If it were not, there would be two vertices in I
which had an edge e between them, but then that would imply that C didn’t cover e and so
C wasn’t an edge covering set. Thus I would be a smaller independent set than the minimal
one, a contradiction.

Now we just have to show that a set of size n−α(G) exists and we form it as mentioned
above, from an independent set, J . Considering the vertices not in J , they form an edge
covering set as if they didn’t J wouldn’t be independent. �
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