Math 4222011 Assignment 3

March 14 ${ }^{\text {th }}, 2011$

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue; you cannot lose marks for anything you write. The parts of the questions are weighted as shown and can be answered in any order.

1. (a) Show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean Domain using the standard norm.
(b) Verify that $\mathbb{Z}[\sqrt{-5}]$ is not a PID by considering $J:=\langle 3,1+2 \sqrt{-5}\rangle$.
(c) Pick a prime $p>5$ different from all others in the class and find elements in $\mathbb{Z}[\sqrt{-p}]$ to show it is not a Unique Factorisation Domain.
2. We say that H and K are relatively prime ideals of a ring R if $H+K=R$.
(a) Explain why $H \cap K=H K$ and give an example (with neither ideal being the zero ideal) of when $H \cap K=\{0\}$.
(b) Explain how this is related to the Chinese Remainder Theorem for integers and find a unique pair amongst your classmates of relatively prime ideals in $\mathbb{Z}[i]$.
(c) Use the first isomorphism theorem and the obvious map (for any H and K, not necessarily your chosen ideals) from R to $(R / H) \times(R / K)$ to prove the Chinese Remainder Theorem for two ideals, ensuring your map is onto and a homomorphism.
3. (a) i. Find all monic (largest term x^{2}) irreducible polynomials of degree 2 in $\mathbb{Z}_{5}[x]$ and one of degree 3 (which is different from everyone else's in the class).
ii. Give an example of a monic polynomial of degree 4 which is not irreducible but which doesn't evaluate to zero for $x=0, \ldots, 4$.
iii. Explain why it is sufficient to only characterise monic polynomials.
iv. What percentage of polynomials of degree 2 and 3 are irreducible?
(b) Create the factor ring with respect to the principal ideal of your polynomial of degree 3. Identify what extension ring it is isomorphic to, showing that the isomorphism holds.
