University College of Cape Breton

Modern Algebra I

November 2003
Time : 72 hours

Answer all questions, giving all working and reasoning.

Q1. The presentation for D_{n} is $\left\langle a, b: a^{n}=b^{2}=e, a b a=b\right\rangle$.
(a) Using a Cayley diagram, or otherwise, list all the elements of D_{6} in terms of a and b and give the cyclic subgroups and hence the orders of each element.
(b) Carefully find all the subgroups of D_{6}, giving reasons why you have found all of them. Which are cyclic subgroups and which are normal subgroups?
(c) What is the centre of D_{6}, the centraliser of $a^{2} b$ and the normaliser of $\langle a b\rangle$?
(d) Using least common multiples, calculate the order of each element of $D_{3} \times \mathbb{Z}_{2}$ and hence give and verify an isomorphic mapping between it and D_{6}.
(e) Prove that if p is prime then $D_{2 p} \cong D_{p} \times \mathbb{Z}_{2}$, but $D_{4 p} \not \approx D_{2 p} \times \mathbb{Z}_{2}$.

Q2. For each of these mappings from S_{n}, identify what the image set and the kernel is in each case.
(a) $\phi(p)=p^{2}$
(b) $\phi(p)=p^{-1}$
(c) $\phi(p)=\left(\begin{array}{l}12) p\end{array}\right.$
(d) $\phi(p)=\left(\begin{array}{ll}1 & 2) p(12\end{array}\right)$
(e) $\phi(p)=$ the length of the longest cycle in p
(f) $\phi(p)=0$ if p is an even permuation, 1 otherwise

Which of the above are homomorphisms? Are any isomorphims?

Q3. (a) Prove that $H_{1}:=\{(0,0),(0,2),(2,0),(2,2)\}$ and $H_{2}:=\langle(2,3)\rangle$ are subgroups of $G:=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.
(b) What are G / H_{1} and G / H_{2} ? What groups are they isomorphic to?
(c) Show that $H_{1} \cap H_{2}$ is a subgroup and find a proper subgroup of G which contains $H_{1} \cup H_{2}$.
(d) Is it true that for any subgroups H_{i} and H_{j} of G that $H_{i} \cup H_{j}$ is always contained in a proper subgroup of G ?
(e) Choose an element of G which, together with $(2,3)$, generates G, and explain why this element can't come from H_{1}. Use these 2 elements to draw a Cayley diagram of G. Clearly identify the cosets of H_{1} and H_{2} on the diagram.

Q4. Define the set $S:=\{p+q i: p, q \in \mathbb{Q}, i=\sqrt{-1}\}$, and recall the set R^{*} is the group of all elements in R apart from zero, with group operation multiplication.
(a) Use the subgroup test to prove that $\mathbb{Q}^{*} \leq S^{*} \leq \mathbb{C}^{*}$.
(b) Use the normal subgroup test to prove that $\mathbb{Q}^{*} \triangleleft S^{*} \triangleleft \mathbb{C}^{*}$.
(c) Describe the cosets of \mathbb{Q}^{*} in S^{*}.
(d) Letting $W:=S^{*} / \mathbb{Q}^{*}$, find three elements of W with order less than 10 , identify W 's group operation and check the four group axioms for W under this operation.

END OF QUESTION PAPER

