Math421 Group Theory: Assignment 1 January 2008

Please show all working and reasoning to get full marks for any question.

1. Let G be the general linear group of degree 2 , the set of all 2×2 matrices with non-zero determinant under matrix multiplication and let S be the special linear group of degree 2 , that is the subgroup of those which have determinant 1 .
(a) Find all matrices which are in the centre of G. Is it also the centre of S ?
(b) What is the centraliser of your registration number matrix? ($\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ from 20xxabcd). Verify that this set of matrices contains the centre of G.
(c) Determine all elements in S of order 2 and one of order 4.
(d) Find a subgroup of G generated by two elements of order 2 which has infinite order, and two other subgroups which are isomorphic to C_{4} and V, the Klein 4-group. [6]
(e) In general, if $H \leq G$, does the centre of H have to be a subset of the centre of G ?
2. (a) Create the group table for D_{6} which is the set of rotations and flips of a regular hexagon. Use a for the rotation of sixty degrees and b for the flip about the vertical axis.
(b) Logically identify all subgroups in the group and determine which are normal.
(c) Find the conjugates of one of the non-normal subgroups.
(d) Is it true that in general any two conjugates have only the identity in common if they are not identical?
