Math415 Graph Theory: Assignment 12005

Please show all working and reasoning to get full marks for any question.

1. Using valency sequence reduction, find all different 4-regular graphs with less than 7 vertices.
2. Calculate the complement of each of the above graphs and thus, without doing any more valency sequences, deduce how many 4-regular graphs there are with 7 vertices and draw them.
3. Draw your graph with as few edges crossing as you can and create its deck on 8 pieces of paper. By considering the deck of G prove the two graphs are not isomorphic.
G1:= \{fc, bc, ec, hc, fi, bi, ei, hi, fd, bd, ed, hd, fg, bg, eg, hg\}
G2: $=\{\mathrm{fh}, \mathrm{fc}, \mathrm{bc}$, ec, fi, bi, ei, hi, fd, bd, ed, hd, bg, eg, hg, cg\}
$\mathrm{G} 3:=\{\mathrm{fe}, \mathrm{bh}, \mathrm{fc}, \mathrm{bc}, \mathrm{ec}, \mathrm{fi}$, ei, hi, fd, bd, hd, cd, bg, eg, hg, ig $\}$
$G 4:=\{\mathrm{fe}, \mathrm{bh}, \mathrm{bc}, \mathrm{hc}, \mathrm{fi}, \mathrm{bi}$, ei, hi, fd, bd, ed, cd, fg, eg, hg, cg $\}$
$\mathrm{G}:=\{\mathrm{fe}, \mathrm{bh}, \mathrm{fc}, \mathrm{bc}, \mathrm{ec}, \mathrm{fi}, \mathrm{bi}, \mathrm{hi}, \mathrm{fd}, \mathrm{ed}, \mathrm{hd}, \mathrm{cd}, \mathrm{bg}, \mathrm{eg}, \mathrm{hg}, \mathrm{ig}\}$
4. Prove that this graph is self-complementary:

5. The basic operation for building 4-regular graphs is removing two edges then adding a vertex and joining it to the four vertices from the two removed edges.

Determine the other operations which may become necessary to not create multiple edges when undoing this operation.

