Math4101 Graph Theory: Assignment 3 (March 2012)

Please show all working and reasoning to get full marks for any question. Hand in your rough working as well so I can see how you investigated and reached your final results. You are reminded that plagiarism is a serious offense and when it is detected you will be punished.

1. Prove by induction on the number of edges in a graph that any bipartite graph has edge colouring number equal to its maximum valency. Find such an edge colouring for a bipartite 4-regular cartesian or tensor product of your choice of 2-regular graphs. [5]
2. (a) Create a graph with 8 vertices and 21 edges by choosing a tree on 8 vertices (with diameter between 4 and 5 and unique within the class) and taking its complement for your graph G.
(b) Explain why the diameter of almost every complement of a tree will be 2 and find all exceptions to this rule.
(c) Calculate what combinations of face sizes G could have on the torus.
(d) Explain algebraically why G cannot be planar and find a Kuratowski subgraph in it. What is the chromatic number of G ?
(e) carefully embed G on the torus, explaining your thoughts at each step. Verify your face sizes match your prediction by listing all faces.
3. (a) Manipulate Euler's formula to show that in any planar triangulation with minimum valency 5 and n_{j} vertices of valency j that

$$
\begin{equation*}
4=2 f-\sum_{j \geq 5}(j-2) n_{j} \tag{3}
\end{equation*}
$$

(b) Find a second relation linking f and $\sum_{j \geq 5} n_{j}$ to prove that we have

$$
-f+4 n_{5}+2 n_{6}-2 n_{8}-4 n_{9}-\ldots=28
$$

(c) Give charge of -1 to each face, 4 to each vertex of valency 5,2 to each vertex of valency 6 , etc. as prescribed above. Our discharging rule will be to give all charge from every vertex of valency 5 and 6 equally to their neighbouring faces.
Under the assumption that any vertex of valency 5 has at most one neighbour of valency 5 or 6 prove that in each possible case the charge on the graph must become negative. Explain what this implies for the four colour theorem.

