Bsc General Part III Mathematics Supplementary

Graph Theory

February 1996
Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)
Candidates may attempt ALL questions being careful to number them A1 to A4.
A1. How many edges and vertices does the complete bipartite graph $K_{m, n}$ have? Embed $K_{3,4}$ in the torus and clearly indicate and count the faces in the embedding. Which face is bounded by all four vertices of the larger partite set? Hence or otherwise embed $K_{4,4}$ and verify that the Euler-Poincaré characteristic of the torus is the same. [10]

A2. Define the graph theoretical concepts of connectivity and girth.

For each of these graphs state (giving reasons for your answer) their connectivity and their girth.

A3. Using the same graphs as in question A2 determine the diameter of each graph and also give the number of vertices in each of their centres.

A4. Prove that a graph is bipartite if and only if it contains no closed walk of odd length. Using this say which of the graphs in question A2 are bipartite.

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B 5 to B 8 .
B5. Draw these graphs: $K_{2}, K_{1,3}, K_{1,3}+K_{2}, K_{1,3} \times K_{2}, K_{1,3} \circ K_{2}$ and $K_{2} \circ K_{1,3}$.
State Kuratowski's theorem and hence or otherwise identify which of the above graphs are planar.

B6. What is a self-complementary graph ? Prove that a self-complementary graph with n vertices has no vertex of valency zero or $n-1$.
What are the feasible valency sequences for s-c graphs with five vertices?
Hence exhibit all self-complementary graphs with five vertices.

B7. State the reconstruction conjecture and exhibit the small graphs which are excluded from the conjecture because they are reconstructable from each other.
Prove Kelly's Lemma and use it to prove that the number of edges in a graph and the valency sequence of a graph is reconstructible.
Reconstruct the graph G from the following deck by answering the following questions:

- What is the number of vertices in G ?
- What is the maximum valency in the deck of G ?
- What is the maximum valency in G and which card in the deck is associated with its removal?
- What is the valency sequence of G ?
- What is G ?

B8. Determine (giving reasons in all cases) whether or not any of these graphs are isomorphic to any of the others.

