Bsc Honours Part II, General Part III Mathematics<br>Graph Theory

June 1995
Time : 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

A1. What are the valency sequences of the two graphs below? Prove whether each sequence gives rise to a unique graph or not and, if not, display a non-isomorphic graph which has the same sequence.
[10]


A2. Define the terms isolated vertex, circuit and terminal vertex. Prove that a finite graph which has no terminal or isolated vertices contains a circuit. Give an example of an infinite graph which contains no terminal or isolated vertex but which doesn't contain a circuit.

A3. What does it mean for a graph to be described as Eulerian? Hamiltonian? Draw or describe four graphs on six vertices which are, respectively, both Eulerian and Hamiltonian, neither Eulerian nor Hamiltonian, Eulerian but not Hamiltonian and, finally, not Eulerian but Hamiltonian.

A4. Draw the graph with adjacency matrix

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Calculate its characteristic polynomial and its chromatic polynomial.
How many different ways are there to colour the graph with two colours ? three ? [10]

## SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B8.

B5. Draw $K_{4,4}$ and the Petersen graph. Embed the former on the torus and the latter on the projective plane, clearly labeling the faces in both cases.

Using these embeddings calculate the Euler-Poincaré characteristic of the two surfaces involved and determine the girths of both graphs.

B6. Define the terms distance, eccentricity, radius, diameter and centre.
Prove that the centre of a tree consists of either a single vertex or a pair of adjacent vertices.


What are the eccentricities of the vertices in the graph $G$ above? What is the radius and diameter of $G$ ? Clearly mark the centre of $G$.

B7. Prove the deletion-contraction formula and deduce the addition-identification formula. [5 Hence, or otherwise, find the chromatic polynomial of the ladder graph $L_{n}:=P_{n} \times P_{2}$, where $P_{n}$ is the path on $n$ vertices.
Find the chromatic polynomial of the graph constructed from $n n$-gons in a path, each joined to one other at an edge.

B8. Define the graph theoretical concept of isomorphism.
Identify which pairs of the graphs in the following figure are isomorphic, stating reasons or giving explicit isomorphisms where necessary.


END OF QUESTION PAPER

