Math2101 Handout 1: Set Formulae 2019

- Basic Definitions

Terminology	Notation	Definition
Complement	$\bar{S}\left(\right.$ or $\left.S^{c}\right)$	not in S
Intersection	$S \cap T$	in both S and T
Union	$S \cup T$	in either S or T or in both
Disjoint Union	$S \triangle T$	in either S or T but not both
Universal Set	\mathcal{U}	all elements
Empty Set	\varnothing	no elements

- Set Relationships

If element z is inside a set S we write $z \in S$, otherwise we write $z \notin S$.
Two sets are equal if every element in one is also in the other, and vice-versa; we write $S=T$.
If a set S is wholly inside of another set T (or equal to it) we write $S \subseteq T$.
The cardinality of a set S is written $|S|$ and is the number of unique elements in S.
We define $R:=\{x: f(x)\}$ if R contains all elements x from the universal set for which $f(x)$ is true.

- Set Algebra

The following are the various set relationships we will establish using Venn Diagrams:

Complementation	$\overline{(\bar{S})}$	$=$	S
Commutativity	$(S \cup T)$	$=$	$(T \cup S)$
	$(S \cap T)$	$=$	$(T \cap S)$
Associativity	$(R \cup S) \cup T$	$=$	$R \cup(S \cup T)$
	$(R \cap S) \cap T$	$=$	$R \cap(S \cap T)$
De Morgan	$\overline{(S \cup T)}$	$=$	$(\bar{S} \cap \bar{T})$
	$\overline{(S \cap T)}$	$=$	$(\bar{S} \cup \bar{T})$
Distributive	$(R \cup S) \cap T$	$=$	$(R \cap T) \cup(S \cap T)$
	$(R \cap S) \cup T$	$=$	$(R \cup T) \cap(S \cup T)$
Idempotent	$(S \cup S)$	$=$	S
	$(S \cap S)$	$=$	S
Absorbtion	$(S \cup T) \cap S$	$=$	S
	$(S \cap T) \cup S$	$=$	S
Identity	$(S \cup \varnothing)$	$=$	S
	$(S \cap \mathcal{U})$	$=$	S
Domination	$(S \cap \varnothing)$	$=$	\varnothing
	$(S \cup \mathcal{U})$	$=$	\mathcal{U}
Inverse	$(S \cup \bar{S})$	$=$	\mathcal{U}
	$(S \cap \bar{S})$	$=$	\varnothing

- Inclusion Exclusion

$$
\begin{gathered}
|S \cup T|=|S|+|T|-|S \cap T| \\
|R \cup S \cup T|=|R|+|S|+|T|-|R \cap S|-|R \cap T|-|S \cap T|+|R \cap S \cap T|
\end{gathered}
$$

