Math2101 Handout 1: Set Formulae 2019

• Basic Definitions

Terminology	Notation	Definition	
Complement Intersection Union Disjoint Union	$\overline{S} \text{ (or } S^c)$ $S \cap T$ $S \cup T$ $S \triangle T$	not in S in both S and T in either S or T or in both in either S or T but not both	
Universal Set	U	all elements	
Empty Set	Ø	no elements	

• Set Relationships

If element z is inside a set S we write $z \in S$, otherwise we write $z \notin S$.

Two sets are equal if every element in one is also in the other, and vice-versa; we write S = T.

If a set S is wholly inside of another set T (or equal to it) we write $S \subseteq T$.

The cardinality of a set S is written |S| and is the number of unique elements in S.

We define $R := \{x : f(x)\}$ if R contains all elements x from the universal set for which f(x) is true.

 $\bullet\,$ Set Algebra

The following are the various set relationships we will establish using Venn Diagrams:

Complementation	(\overline{S})	=	S
Commutativity	$(S \cup T)$	=	$(T \cup S)$
	$(S \cap T)$	=	$(T \cap S)$
Associativity	$(R \cup S) \cup T$	=	$R \cup (S \cup T)$
	$(R \cap S) \cap T$	=	$R \cap (S \cap T)$
De Morgan	$\overline{(S \cup T)}$	=	$(\overline{S} \cap \overline{T})$
	$\overline{(S \cap T)}$	=	$(\overline{S} \cup \overline{T})$
Distributive	$(R \cup S) \cap T$	=	$(R \cap T) \cup (S \cap T)$
	$(R \cap S) \cup T$	=	$(R \cup T) \cap (S \cup T)$
Idempotent	$(S \cup S)$	=	S
	$(S \cap S)$	=	S
Absorption	$(S \cup T) \cap S$	=	S
	$(S\cap T)\cup S$	=	S
Identity	$(S\cup \varnothing)$	=	S
	$(S \cap \mathcal{U})$	=	S
Domination	$(S \cap \varnothing)$	=	Ø
	$(S \cup \mathcal{U})$	=	\mathcal{U}
Inverse	$(S \cup \overline{S})$	=	\mathcal{U}
	$(S \cap \overline{S})$	=	Ø

• Inclusion Exclusion

$$|S \cup T| = |S| + |T| - |S \cap T|$$
$$|R \cup S \cup T| = |R| + |S| + |T| - |R \cap S| - |R \cap T| - |S \cap T| + |R \cap S \cap T|$$