Math 2101 (2018/19) Workshop 3: Proofs, continued

We are going to work more on our proofs this time:

- 1. Let us call an integer n such that n = 3k where $k \in \mathbb{Z}$, a triad.
 - (a) Prove that if a is a triad and b is a triad then $a^2 2b$ is also a triad, directly.
 - (b) If $p(n) :\equiv "n$ is a triad", identify the two separate possible ways for n to be equal to something if $\sim p(n)$ is true for an integer n.
 - (c) Use these cases to show that, by contradiction, if c^2 is a triad then c is a triad.
 - (d) Prove that if $d \in \mathbb{Z}$ then $d^3 d$ is a triad, directly, using factorisation or cases.
- 2. Recall that the *power set* of a set is the set of all subsets of it.
 - (a) Pick any set E of containing two different positive numbers and explain why there are 4 different subsets of E.
 - (b) Add one new element to E to make F and explain why there are now 8 subsets of F, using whether or not the new element is in the subset to divide the subsets into two cases.
 - (c) Using this idea, prove by induction that there are $2^{|S|}$ subsets for any set S.
- 3. Let x and w be real numbers such that x > w.
 - (a) Prove by the direct method that if w > 0 then $\frac{1}{w} > \frac{1}{x}$.
 - (b) Explain why, if w < 0 and x > 0, that $\frac{1}{x} > \frac{1}{w}$.
 - (c) Use the contrapositive method to show that if $t \leq 0$ then $tx \leq tw$.
 - (d) Now taking $w \le x < 0$, use (c) to show that we again have $\frac{1}{x} > \frac{1}{w}$.
 - (e) Express the logic statement " $x^2 > w^2$ when w < -x"' as an if-then statement and then prove the resulting statement using the contrapositive method.