Math 2101 (2018/19) Workshop 2: Logic and Proofs

We are going to investigate logic and simple proofs this time:

1. (a) Using squared paper, or Maple, carefully plot the curves $x^{2}+y^{2}=4, y=\frac{x}{2}+1$ and $y^{2}=3 x-4$ for x in the range $[-3, \ldots 6]$.
(b) Now make a new diagram using (a) and shade in the different regions of \mathbb{R}^{2} where the following logic statements are true:
$p(x, y): \equiv " x^{2}+y^{2}<4 ", q(x, y): \equiv " 3 x-4 \geq y^{2} ", r(x, y): \equiv "\left|y-\frac{x}{2}\right| \leq 1 "$.
(c) i. Identify the regions of \mathbb{R}^{2} where $(p(x, y) \wedge(\sim r(x, y)))$ is true.
ii. Find how many points could be used to show $\exists x, y \in \mathbb{Z}:(p(x, y) \wedge r(x, y))$, and verify the points using algebra.
iii. Similarly explain why $\exists x, y \in \mathbb{Z}:(p(x, y) \wedge q(x, y))$ is false.
iv. Are there an infinite number of integer points where $(q(x, y) \wedge r(x, y))$ is true?
(d) Similarly, determine whether or not the following statements are true or false:
i. $\forall x, y \in \mathbb{Z}:(p(x, y) \wedge q(x, y)) \longrightarrow r(x, y)$
ii. $\exists x, y \in \mathbb{R}:(p(x, y) \wedge q(x, y)) \longrightarrow r(x, y)$
iii. $\forall x \in \mathbb{R}:(\exists y>0: \sim r(x, y))$
iv. $\exists y \in \mathbb{Z}:(\forall x>0: p(x, y) \vee q(x, y))$
2. Let $w(n): \equiv " n$ is odd" \equiv " $n=1+2 \times j: j \in \mathbb{Z}$ ".
(a) Explain why " $\forall m \in \mathbb{Z}:(w(m) \vee(\sim w(m)))$ " is a true statement and explain exactly when $(\sim w(m))$ is true with this domain.
(b) Prove that, for integers n, if n is odd then n^{2} must be odd, and so $w(n) \longrightarrow w\left(n^{2}\right)$.
(c) Create the truth table for $(q \vee(\sim p))$ and compare it to that for $p \longrightarrow q$ and $(\sim q) \longrightarrow(\sim p)$.
(d) Express $\left(\sim w\left(n^{2}\right)\right)$ and $(\sim w(n))$ in words and hence deduce something about integers, even numbers and squares.
(e) Why isn't (d) true if $n \in \mathbb{R}$?
(f) If $a^{2}=2 \times b^{2}$ for integers a and b use (d) to explain why both a and b must be even, and see what happens after you assume that.
