Math205 Handout 2: Methods of Proof

We shall show how to go about proving the statement "if an odd integer is multiplied by -1 and that new integer is then added to 26 the result is odd". We first identify the statements $p(x)$ and $q(x)$ in the above statement if it is $p(x) \rightarrow q(x)$ and deduce that:
$p(x) \quad \equiv " x$ is odd " $\equiv " x=2 j+1$ for some $j \in \mathbb{Z}^{\prime \prime}$
$q(x): \equiv " 26-x$ is odd" $\equiv " 26-x=2 k+1$ for some $k \in \mathbb{Z} "$
We are usually either told to use one of the methods below, or we can choose one:

- Direct: We suppose that $p(x)$ is true and using what that tells us about x we then apply that to the subject of $q(x)$ in order to try to show that it is true when $p(x)$ is.
So if $p(x)$ is true then $x=2 j+1$, and $q(x)$ is about $26-x$, and putting these two things together
$26-x=26-(2 j+1)=26-2 j-1=25-2 j=25+2 \times(-j)=1+24+2 \times(-j)=2 \times(12-j)+1$
Thus we have our statement in the form of $q(x)$ where $k=12-j$, and it just remains to establish that this k is an integer. Since j is, multiplying by -1 means $-j$ is still an integer, and then subtracting this from 12, another integer, means that k is an integer as required.
- Contrapositive: We can alternatively suppose that $q(x)$ is false and using what that tells us about x we then apply that to the subject of $p(x)$ in order to try to show that it is false when $p(x)$ is. We are thus proving $(\sim q(x)) \rightarrow(\sim p(x))$ which we know is logically equivalent to $p(x) \rightarrow q(x)$.
So if $q(x)$ is false we use the fact that, for integers, not being odd is the same as being even, so " $26-x=2 m ; m \in \mathbb{Z}$ ", and $\sim p(x)$ says that " $x=2 n ; n \in \mathbb{Z}$ ". Simplifying $(\sim q(x))$:

$$
\begin{aligned}
26-x & =2 m \\
x & =26-2 m \\
& =2 \times(13-m)
\end{aligned}
$$

This equals $2 n$ if we take $n=13-m$ and so, again, since m is an integer, so is $-m$ and adding 13 to this keeps it an integer, so n is an integer as required.

- Contradiction: We now suppose that $p(x)$ is true and also that $q(x)$ is false. We intend to get an impossible situation arising whence we can use the logical equivalence of $(p(x) \wedge(\sim$ $q(x))) \leftrightarrow\left(\sim T_{0}\right)$ and $(p(x) \rightarrow q(x)) \leftrightarrow T_{0}$ to show that $p(x)$ implies $q(x)$ as required.
As before, if $p(x)$ is true then $x=2 j+1$, and $(\sim q(x))$ says that $26-x=2 m$. Combining these two statements to remove x we get:

$$
\begin{aligned}
26-(2 j+1) & =2 m \\
25 & =2 j+2 m \\
& =2(j+m) \\
\frac{25}{2} & =j+m
\end{aligned}
$$

This statement is our desired contradiction since both j and m are integers and so their sum is an integer, but $\frac{25}{2}$ is certainly not an integer as it is 12.5 in decimal terms and no integer has to be written with a decimal point.

Proof by Induction

- Induction: Given a statement $p(n)$ about an integer n we wish to show it is true for all integer values of n at least a and we proceed as follows:
- Initial Case: Show that $p(a)$ is true (optionally also test $p(a+1)$ and $p(a+2)$ to see how the induction will proceed).
- Inductive Case: Assume $p(k)$ is true for some value of $k \geq a$. State one side of $p(k+1)$ in terms of the corresponding side of $p(k)$ and use the assumptions to deduce that the other side of $p(k+1)$ is related in the same way as $p(n)$ was.

For example: $p(n): \equiv " \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} "$

- Initial Case: The first possible value of n is 1 , so we consider $p(1):=$ " $1^{2}=1=$ $\frac{1 \times(1+1) \times(2 \times 1+1)}{6}=1$ " as required. Similarly, $p(2):=" 1^{2}+2^{2}=5=\frac{2 \times(2+1) \times(2 \times 2+1)}{6}=5$ " and $p(3):=" 1^{2}+2^{2}+3^{2}=5+3^{2}=14=\frac{3 \times(3+1) \times(2 \times 3+1)}{6}=14$ ".
- Inductive Case: Assume $p(k):=" \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6} "$. Now the left hand side (LHS) of $p(k+1)$ is

$$
\sum_{i=1}^{k+1} i^{2}=\left(\sum_{i=1}^{k} i^{2}\right)+(k+1)^{2}=\operatorname{LHS}(p(k))+(k+1)^{2}
$$

But using the assumption (the inductive hypothesis), we get that

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)+6(k+1)}{6} \\
& =(k+1) \frac{\left(2 k^{2}+7 k+6\right)}{6} \\
& =(k+1) \frac{(2 k+3)(k+2)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

But this is exactly the statement $p(k+1)$ that we wished to establish!

- Basic formulae in Sigma Notation:

$$
1+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad b+\ldots+b=\sum_{i=1}^{n} b=n b \quad 1+x+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

