
Math205 Handout 2: Methods of Proof
We shall show how to go about proving the statement “if an odd integer is multiplied by -1 and

that new integer is then added to 26 the result is odd”. We first identify the statements p(x) and
q(x) in the above statement if it is p(x) → q(x) and deduce that:

p(x) :≡ “x is odd ” ≡ “x = 2j + 1 for some j ∈ Z′′

q(x) :≡ “26− x is odd” ≡ “26− x = 2k + 1 for some k ∈ Z”
We are usually either told to use one of the methods below, or we can choose one:

• Direct: We suppose that p(x) is true and using what that tells us about x we then apply
that to the subject of q(x) in order to try to show that it is true when p(x) is.

So if p(x) is true then x = 2j + 1, and q(x) is about 26 − x, and putting these two things
together

26−x = 26−(2j+1) = 26−2j−1 = 25−2j = 25+2×(−j) = 1+24+2×(−j) = 2×(12−j)+1

Thus we have our statement in the form of q(x) where k = 12 − j, and it just remains to
establish that this k is an integer. Since j is, multiplying by -1 means −j is still an integer,
and then subtracting this from 12, another integer, means that k is an integer as required.

• Contrapositive: We can alternatively suppose that q(x) is false and using what that tells
us about x we then apply that to the subject of p(x) in order to try to show that it is false
when p(x) is. We are thus proving (∼ q(x)) → (∼ p(x)) which we know is logically equivalent
to p(x) → q(x).

So if q(x) is false we use the fact that, for integers, not being odd is the same as being even,
so “26− x = 2m;m ∈ Z”, and ∼ p(x) says that “x = 2n;n ∈ Z”. Simplifying (∼ q(x)):

26− x = 2m

x = 26− 2m

= 2× (13−m)

This equals 2n if we take n = 13 − m and so, again, since m is an integer, so is −m and
adding 13 to this keeps it an integer, so n is an integer as required.

• Contradiction: We now suppose that p(x) is true and also that q(x) is false. We intend to
get an impossible situation arising whence we can use the logical equivalence of (p(x) ∧ (∼
q(x))) ↔ (∼ T0) and (p(x) → q(x)) ↔ T0 to show that p(x) implies q(x) as required.

As before, if p(x) is true then x = 2j + 1, and (∼ q(x)) says that 26 − x = 2m. Combining
these two statements to remove x we get:

26− (2j + 1) = 2m

25 = 2j + 2m

= 2(j + m)
25
2

= j + m

This statement is our desired contradiction since both j and m are integers and so their sum
is an integer, but 25

2 is certainly not an integer as it is 12.5 in decimal terms and no integer
has to be written with a decimal point.



Proof by Induction

• Induction: Given a statement p(n) about an integer n we wish to show it is true for all
integer values of n at least a and we proceed as follows:

– Initial Case: Show that p(a) is true
(optionally also test p(a + 1) and p(a + 2) to see how the induction will proceed).

– Inductive Case: Assume p(k) is true for some value of k ≥ a. State one side of p(k + 1)
in terms of the corresponding side of p(k) and use the assumptions to deduce that the
other side of p(k + 1) is related in the same way as p(n) was.

For example: p(n) :≡ “
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
”

– Initial Case: The first possible value of n is 1, so we consider p(1) := “12 = 1 =
1×(1+1)×(2×1+1)

6 = 1” as required. Similarly, p(2) := “12+22 = 5 = 2×(2+1)×(2×2+1)
6 = 5”

and p(3) := “12 + 22 + 32 = 5 + 32 = 14 = 3×(3+1)×(2×3+1)
6 = 14”.

– Inductive Case: Assume p(k) := “
∑k

i=1 i2 = k(k+1)(2k+1)
6 ”. Now the left hand side (LHS)

of p(k + 1) is

k+1∑
i=1

i2 =

(
k∑

i=1

i2

)
+ (k + 1)2 = LHS(p(k)) + (k + 1)2.

But using the assumption (the inductive hypothesis), we get that

k+1∑
i=1

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)
k(2k + 1) + 6(k + 1)

6

= (k + 1)
(2k2 + 7k + 6)

6

= (k + 1)
(2k + 3)(k + 2)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

But this is exactly the statement p(k + 1) that we wished to establish!

• Basic formulae in Sigma Notation:

1+. . .+n =
n∑

i=1

i =
n(n + 1)

2
b+. . .+b =

n∑
i=1

b = nb 1+x+. . .+xn =
n∑

i=0

xi =
xn+1 − 1

x− 1


