Math205 Handout 2: Methods of Proof
We shall show how to go about proving the statement “if an odd integer is multiplied by -1 and
that new integer is then added to 26 the result is odd”. We first identify the statements p(x) and
¢(x) in the above statement if it is p(x) — ¢(x) and deduce that:
p(z) “xr is odd ” = “z=2j+1 for some j € Z"
q(x) “26 —x is odd” = “26 —x =2k + 1 for some k € Z
We are usually either told to use one of the methods below, or we can choose one:

e Direct: We suppose that p(x) is true and using what that tells us about x we then apply
that to the subject of ¢(x) in order to try to show that it is true when p(x) is.

So if p(x) is true then x = 25 + 1, and ¢(x) is about 26 — z, and putting these two things
together

26—x =26—(2j+1) =26—2j—1=25—-25 = 2542x(—j) = 142442 (—j) =2x(12—j)+1
Thus we have our statement in the form of ¢(z) where k = 12 — j, and it just remains to

establish that this k is an integer. Since j is, multiplying by -1 means —j is still an integer,
and then subtracting this from 12, another integer, means that k is an integer as required.

e Contrapositive: We can alternatively suppose that g(x) is false and using what that tells
us about x we then apply that to the subject of p(x) in order to try to show that it is false
when p(x) is. We are thus proving (~ ¢(z)) — (~ p(z)) which we know is logically equivalent
to p(z) — q(x).

So if ¢(z) is false we use the fact that, for integers, not being odd is the same as being even,
s0 “26 —x =2m;m € 77, and ~ p(x) says that “z = 2n;n € Z”. Simplifying (~ ¢(z)):

26— = 2m
r = 26—2m
2x (13—m)

This equals 2n if we take n = 13 — m and so, again, since m is an integer, so is —m and
adding 13 to this keeps it an integer, so n is an integer as required.

e Contradiction: We now suppose that p(z) is true and also that g(x) is false. We intend to
get an impossible situation arising whence we can use the logical equivalence of (p(z) A (~
q(z))) < (~Tp) and (p(z) — q(x)) < Tp to show that p(x) implies ¢(z) as required.

As before, if p(x) is true then = 25 + 1, and (~ ¢(z)) says that 26 — 2 = 2m. Combining
these two statements to remove = we get:

26— (27+1) = 2m
25 = 25+42m
= 2(j +m)
25 .
5} = J7+m

This statement is our desired contradiction since both j and m are integers and so their sum
is an integer, but % is certainly not an integer as it is 12.5 in decimal terms and no integer
has to be written with a decimal point.



Proof by Induction

e Induction: Given a statement p(n) about an integer n we wish to show it is true for all
integer values of n at least a and we proceed as follows:

— Initial Case: Show that p(a) is true
(optionally also test p(a 4+ 1) and p(a + 2) to see how the induction will proceed).

— Inductive Case: Assume p(k) is true for some value of k > a. State one side of p(k + 1)
in terms of the corresponding side of p(k) and use the assumptions to deduce that the
other side of p(k + 1) is related in the same way as p(n) was.

= 22 n—|—1(2n+1)”

For example: p(n

— Initial Case: The first possible value of n is 1, so we consider p(1) = “12 = 1 =
DD @A) — 17 a5 required. Similarly, p(2) := “124-22 = 5 = ZXEHUX@EFD) _ 5
12 1 92 | 92 _ 2 _ 14 — 3XB+1)x(2x3+1) _ 1

and p(3) == “1° +2° +3°=5+3" = 4 = ———5 ="~ = 14",

— Inductive Case: Assume p(k) := “Zle i? = W”. Now the left hand side (LHS)
of p(k+1) is

k+1 k
it = (Z i2> + (k+1)2 = LHS(p(k)) + (k + 1)2.

i=1
But using the assumption (the inductive hypothesis), we get that

k+1
iiQ _ k:(k:—i—l)6(2/~c+1)+(k+1)2
k(2k + 1) + 6(k + 1)
6
(2k? + Tk + 6)
6
_ <k+1)(2k+3é(k+2)
(k+1)(k +2)(2k + 3)
6
k+1D)((k+1)+1)(2(k~+1)+1)
6

= (k+1)

= (k+1)

But this is exactly the statement p(k + 1) that we wished to establish!

¢ Basic formulae in Sigma Notation:

n

1 - ™t —1
1—|—...+n—Zi—n(n2+) b—l—...+b:Zb:nb 14+z+.. . +2" Z:L'
i=1 i=1



