Math205 Handout 2: Methods of Proof

We shall show how to go about proving the statement "if an odd number is multiplied by -1 and that new number is then subtracted from 26 the result is odd".

We first identify the statements $p(x)$ and $q(x)$ in the above statement and deduce that:

$$
\begin{array}{rll}
p(x) & : \equiv " x \text { is odd " } & : \equiv x=2 j+1 \text { for some } j \in \mathbb{Z}^{\prime \prime} \\
q(x) & : \equiv " 26-x \text { is odd" } & : \equiv " 26-x=2 k+1 \text { for some } k \in \mathbb{Z} "
\end{array}
$$

We are usually either told to use one of the methods below, or we can choose one:

- Direct: We suppose that $p(x)$ is true and using what that tells us about x we then apply that to the subject of $q(x)$ in order to try to show that it is true when $p(x)$ is.
So if $p(x)$ is true then $x=2 j+1$, and $q(x)$ is about $26-x$, and putting these two things together
$26-x=26-(2 j+1)=26-2 j-1=25-2 j=25+2 \times(-j)=1+24+2 \times(-j)=2 \times(12-j)+1$
Thus we have our statement in the form of $q(x)$ where $k=12-j$, and it just remains to establish that this k is an integer. Since j is, multiplying by -1 means $-j$ is still an integer, and then subtracting this from 12, another integer, means that k is an integer as required.
- Contrapositive: We can alternatively suppose that $q(x)$ is false and using what that tells us about x we then apply that to the subject of $p(x)$ in order to try to show that it is false when $p(x)$ is. We are thus proving $(\sim q(x)) \rightarrow(\sim p(x))$ which we know is logically equivalent to $p(x) \rightarrow q(x)$.
So if $q(x)$ is false then $26-x=2 m, m \in \mathbb{Z}$, and $\sim p(x)$ says that " $x=2 n, n \in \mathbb{Z}$. Simplifying $(\sim q(x))$ to tell us about x

$$
\begin{aligned}
26-x & =2 m \\
x & =26-2 m \\
& =2 \times(13-m)
\end{aligned}
$$

This equals $2 n$ if we take $n=13-m$ and so, again, since m is an integer, so is $-m$ and adding 13 to this keeps it an integer, so n is an integer as required.

- Contradiction: We now suppose that $p(x)$ is true and also that $q(x)$ is false. We intend to get an impossible situation arising whence we can use the logical equivalence of $(p(x) \wedge(\sim$ $q(x))) \leftrightarrow\left(\sim T_{0}\right)$ and $(p(x) \rightarrow q(x)) \leftrightarrow T_{0}$ to show that $p(x)$ implies $q(x)$ as required.
As before, if $p(x)$ is true then $x=2 j+1$, and $(\sim q(x))$ says that $26-x=2 m$. Combining these two statements to remove x we get:

$$
\begin{aligned}
26-(2 j+1) & =2 m \\
25 & =2 j+2 m \\
& =2(j+m) \\
\frac{25}{2} & =j+m
\end{aligned}
$$

This statement is our desired contradiction since both j and m are integers and so their sum is an integer, but $\frac{25}{2}$ is certainly not an integer as it is 12.5 in decimal terms and no integer has to be written with a decimal point.

