Math 115 Test 3, March 13th 2002
Q1: Find the eigenvalues and eigenvectors of this matrix

$$
\left[\begin{array}{ccc}
-7 / 2 & -1 & -1 / 2 \\
-1 & -2 & 1 \\
-1 / 2 & 1 & -7 / 2
\end{array}\right]
$$

Q2: Verify that the eigenvectors of the matrix $M:=\left[\begin{array}{cc}1 / 3 & 1 / 12 \\ -4 / 3 & 7 / 6\end{array}\right]$ are $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 8\end{array}\right]$ and deduce the eigenvalues of M. Identify the dominant eigenvalue and hence, or otherwise, find the general formula for c_{n} and r_{n} which are defined by the matrix equation

$$
\left[\begin{array}{c}
c_{k} \\
r_{k}
\end{array}\right]=M\left[\begin{array}{c}
c_{k-1} \\
r_{k-1}
\end{array}\right] \text { where }\left[\begin{array}{c}
c_{0} \\
r_{0}
\end{array}\right]=\left[\begin{array}{c}
36 \\
600
\end{array}\right]
$$

Q3: Show that $S:=\{(a, 3 b-2 a, b)\}$ satisfies all of the conditions required for a subspace. Which of the three subspace conditions do these sets satisfy? Give proofs and/or counterexamples as necessary.

$$
\{(x, y): x y>0\},\left\{(s, t): s^{2}+t^{2}<1\right\},\left\{\left(i+\frac{1}{2}, j+\frac{1}{2}\right): i, j \text { integers }\right\}
$$

