Math 115 Test 2, February 62002

Instructions: Each question is worth an equal amount of marks, answer all questions (in any order). Start a new page for each question and write your name and student number upon each sheet handed in. Every form of cheating is prohibited and will be punished by a mark of zero for both parties involved, so it is your responsibility to make sure no-one can see your work.

Q1: Suppose we have a matrix of this form:

$$
D:=\left[\begin{array}{ccc}
-1 & x & 2 \\
x & 3 & -2 \\
-2 & 1 & 1
\end{array}\right]
$$

Using row operations, find both values of x which make this matrix become non-invertible.
Using $x:=-1$, find the general solution to $D Y=\left[\begin{array}{c}-9 \\ 11 \\ -3\end{array}\right]$.

Q2: Recall that a matrix is called symmetric if $A^{T}=A$.
Prove that for any two symmetric matrices F and G that these 5 matrices are also symmetric:

$$
F^{-1} \quad G^{T} \quad F F^{T} \quad F+G \quad F^{k}
$$

For each matrix, clearly indicate which matrix properties you use at each stage.

Q3: For these statements, either prove them, or give a counterexample to disprove them. Explain why your counterexample was chosen and give the correct version of the particular statement.

1. $(A+B)^{2}=A^{2}+2 A B+B^{2}$
2. If A^{2} exists then A must be a square matrix
3. If $A C=C B$ then A and B cannot be square matrices

Let us suppose that $E^{2}=E$ for some 2 x 2 matrix E which is neither the identity or the zero matrix. Show that E cannot have an inverse and give three matrices which could be E, one of which should have some negative entries.

Take home question: Please confer but do not copy!
This equation does have a solution for a 2 x 2 matrix X . Find it, and investigate why. Using the knowledge thus gained, find a set of matrices which satisfy $A B=C D$ where A is $4 \mathrm{x} 3, \mathrm{~B}$ is $3 \mathrm{x} 3, \mathrm{C}$ is 4 x 2 and D is 2 x 3 where the $(1,2)$ th element of B is x and the $(3,2)$ th element of B is y where x and y are the last two digits of your registration number.

$$
\left[\begin{array}{ll}
8 & 5 \\
5 & 4 \\
6 & 2
\end{array}\right] X=\left[\begin{array}{cc}
3 & -2 \\
1 & -3 \\
4 & 2
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-1 & 0
\end{array}\right]
$$

