Instructions: Each question is worth an equal amount of marks, answer all questions (in any order). Start a new page for each question and write your name and student number upon each sheet handed in. Every form of cheating is prohibited and will be punished by a mark of zero for both parties involved, so it is your responsibility to make sure no-one can see your work.

Q1: Given these four matrices, solve these equations for X or explain why they cannot be solved:

$$
\begin{gathered}
A:=\left[\begin{array}{ccc}
3 & -1 & 0 \\
1 & 2 & -5
\end{array}\right] B:=\left[\begin{array}{cc}
5 & 1 \\
-4 & -1
\end{array}\right] C:=\left[\begin{array}{cc}
4 & 1 \\
7 & -3 \\
-1 & -4
\end{array}\right] D:=\left[\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right] \\
X=A C \quad X^{T}=3 D-\frac{B}{2} \quad D^{T} X=A \quad B A=X C \quad A=B X+C^{T}
\end{gathered}
$$

Q2: Diagonal matrices are defined by $\left[d_{i, j}\right]=0$ if $i \neq j$. For which $2 \mathrm{x} 2,2 \mathrm{x} 3$ and 3 x 3 matrices X does the relationship $D X=X D$ hold? Given two $n \mathrm{x} n$ diagonal matrices C and D, prove that $C+D, C D, C^{T}$ and D^{-1} are also diagonal.

Q3: Use row operations to find the general solution to this set of equations:

$$
\begin{array}{r}
-5 x_{1}+7 x_{2}-2 x_{3}-10 x_{4}+10 x_{5}=3 \\
9 x_{1}-9 x_{2}+4 x_{3}-8 x_{5}=5 \\
-5 x_{1}++4 x_{2}+7 x_{3}-9 x_{4}+5 x_{5}=1 \\
7 x_{1}-8 x_{2}+3 x_{3}+5 x_{4}-9 x_{5}=1
\end{array}
$$

Q4: List the row operations needed to take this matrix J to reduced row echelon form, and then make another list, this time of the operations required to find and solve the LU decomposition. Using either set of operations, solve $J X=K$

$$
J:=\left[\begin{array}{ccc}
-2 & 4 & 0 \\
2 & 3 & 1 \\
3 & 5 & -1
\end{array}\right] \quad K:=\left[\begin{array}{c}
-6 \\
-5 \\
2
\end{array}\right]
$$

Q2*: For bonus marks, and only when all parts of all other questions have been attempted, explain the general solution for an $m \mathrm{x} n$ matrix X for which $D X=X D$, and explain which of the four expressions $C+D, C D, C^{T}$ and D^{-1} are still diagonal for general matrices C and D.

