Math 115 Midterm , February 272002

Q1: Calculate the inverse of this matrix $B:=\left[\begin{array}{lll}5 & 5 & 4 \\ 5 & 4 & 3 \\ 1 & 2 & 4\end{array}\right]$ in one of these two ways:

- Form the adjoint of B and find the determinant of B
or
- Form the 3 x 6 matrix $(B: I)$ and use row operations to take it to $\left(I: B^{-1}\right)$.

Prove that the inverse of the matrix $X Y^{-1}$ is $Y X^{-1}$.
Simplify this expression as much as possible: $X^{-1} Y^{2}\left(X Y^{2}\right)^{-1} X^{3}$.

Q2: Show that this matrix $C:=\left[\begin{array}{ccccc}2 & -11 & 24 & -34 & 37 \\ 6 & 5 & 8 & -2 & 5 \\ -1 & -4 & 4 & -8 & 8 \\ 9 & 17 & -4 & 22 & -19\end{array}\right]$ has rank 2. Considering the
matrix equation $C X=D$ show that if $D:=D_{1}=[3,2,-1,2]^{T}$ then X has no possible solutions and list all solutions for X if $D:=D_{2}=[-4,28,-8,52]^{T}$.

If X and Y are matrices with rank r is it true that $X+Y$ also has rank r ? Give reasons and/or counterexamples. What can we say about the rank of $X Y$?

Q3: Using row and/or column operations, and Laplace expansions, evaluate the determinant of this matrix:

$$
A:=\left[\begin{array}{cccc}
-3 & -2 & 3 & -1 \\
y & -3 & 2 & 3 \\
-1 & x & 1 & -3 \\
2 & 3 & -2 & -2
\end{array}\right]
$$

For which values of x and y is this matrix invertible? Using the rules of determinants prove that $\operatorname{det}(A)=\operatorname{det}(D)$ for any matrices A and D related by $A P=P D$ where P is an invertible matrix.

Take home question: Please use Maple if you like but do not copy! Find a matrix A with integer entries and no zeroes which can be diagonalised to

$$
D:=\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right]
$$

where a, b, c and d are the last 4 non zero entries of your student ID.
Verify that $A=P D P^{-1}$ for some P.

