Math1204 Test 3

March $7^{\text {th }}, 2016$

Answer all questions and give complete reasons and checks for your answers. Please do not erase anything, just put a line through your work and continue. The parts of the questions are weighted as shown and can be answered in any order. If you get stuck on a part of a question, ask me and I can give you a hint in return for a mark.

1. (a) Use diagonalisation to find the general expression for A^{n} if $A:=\left(\begin{array}{rr}-66 & -40 \\ 104 & 63\end{array}\right)$.
(b) Give a non-zero \underline{v} such that the entries in $A^{n} \underline{v}$ are at most 40 for any integer n.
2. We want to use diagonalisation to solve this recurrence:

$$
b_{j+1}:=2 b_{j}+9 b_{j-1}-18 b_{j-2}, \quad b_{0}:=26, \quad b_{1}:=19, \quad b_{2}:=89
$$

(a) Give the underlying matrix M and the polynomial that its eigenvalues must satisfy. [2]
(b) Find the eigenvalues by trial substitution, give the eigenvectors and hence M 's diagonalisation matrices D and P.
(c) Determine the correct power of M relating a matrix with b_{k} in to one with b_{0} in. Determine the formula for b_{k} in terms of powers of the eigenvalues by multiplying out the diagonalisation matrices or solving a matrix equation to avoid having to calculate the inverse of P.
(d) Use logarithms to find which value of k has b_{k} first less than -10^{10}.

