Math115 Test 2: Determinants and Eigenvalues

1. (a) Show that $\left(\begin{array}{r}5 \\ -3 \\ 4\end{array}\right)$ is an eigenvector of $\left[\begin{array}{rrr}-2 & 20 & 20 \\ 4 & -10 & -14 \\ -2 & 14 & 15\end{array}\right]$ and deduce its eigenvalue.
(b) Find the other two eigenvalues and one of the other eigenvectors.
2. (a) Show that zero is an eigenvalue of $A:=\left[\begin{array}{rr}1 & -2 \\ -2 & 4\end{array}\right]$ and also that $\operatorname{det}(A)=0$ also.
(b) For a general 2×2 matrix of determinant zero show that zero is an eigenvalue.
(c) Explain why any matrix of determinant zero will have zero as an eigenvalue.
3. (a) Find the inverse of $B:=\left[\begin{array}{rrr}3 & 2 & 1 \\ -2 & 0 & 1 \\ 7 & 3 & 0\end{array}\right]$ and hence solve this equation: $[x y z](2 B)^{T}=[16-2252]$.
