1. Given these two matrices, what are these matrices, if they exist? $C D, D C^{T}, C D^{T}, D^{T} C$?

$$
C:=\left(\begin{array}{lll}
3 & -1 & 0 \\
2 & -2 & 3
\end{array}\right) D:=\left(\begin{array}{rrr}
-1 & 5 & -1 \\
-1 & 11 & -6
\end{array}\right)
$$

2. What is X if $C=2 X^{T}+\left(\begin{array}{ll}-2 & 1 \\ -3 & 1\end{array}\right) D$?
3. By considering the elements, prove that $(A+B)^{T}=A^{T}+B^{T}$ for 2×2 matrices. Explain why it will also be true for $m \times n$ matrices.
4. If A and B are symmetric explain why $(A+B)$ will also be.
5. If $(A+B)$ is symmetric, do A and B have to be?
6. Use row operations to find all solutions to:

$$
\begin{aligned}
w-2 x+z & =2 \\
-2 w+4 x+y-2 z & =-8 \\
-w+2 x+y-z & =-6
\end{aligned}
$$

