Math115 Test 5: Geometrical Vectors

March 23rd, 2010

Answer all parts of the questions and give complete reasons and checks for your answers. Attach all rough working and do not erase anything that might earn you marks. The parts of the questions are weighted as shown in square brackets on the right.

1. (a) Find the vector orthogonal to both direction vectors of these lines and hence find the shortest distance between them:

$$
L_{1}:=\left(\begin{array}{r}
-1 \\
5 \\
1
\end{array}\right)+k\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \quad, \quad L_{2}:=\left(\begin{array}{l}
4 \\
2 \\
5
\end{array}\right)+j\left(\begin{array}{r}
4 \\
-1 \\
6
\end{array}\right)
$$

(b) Give a dot product equation for a plane P_{1} which never meets L_{1}. Give another plane P_{2}, also in dot product form, which contains L_{2} completely. Verify your answers using algebra. Could P_{1} and P_{2} be the same plane?
2. (a) These are hyperplanes in 4 dimensional space; find an equation of all the points at which they intersect and explain what kind of object their intersection is. [5]

$$
H_{1}:\left(\begin{array}{r}
-5 \\
1 \\
0 \\
2
\end{array}\right) \circ\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=4, \quad H_{2}:\left(\begin{array}{r}
1 \\
-4 \\
-3 \\
5
\end{array}\right) \circ\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=-7
$$

(b) Find the points of intersection of this line L with each of H_{1} and H_{2}. Which point of intersection is nearer to the origin?

$$
L:=\left(\begin{array}{r}
1 \\
-2 \\
-3 \\
-1
\end{array}\right)+t\left(\begin{array}{r}
4 \\
3 \\
-1 \\
2
\end{array}\right)
$$

