Cape Breton University

Matrix Algebra

Please answer any THREE of these questions, please make sure to give all reasoning and working for all questions answered. Start a fresh sheet of paper for each question attempted.

Q1. (a) Use a column operation followed by a row operation to find an eigenvalue of this matrix, then factorise the determinant to get the other two eigenvalues:

$$
C:=\left(\begin{array}{rrr}
-10 & -12 & 4 \\
-6 & -9 & 2 \\
-42 & -57 & 16
\end{array}\right)
$$

(b) Find an eigenvector by solving the appropriate system of equations.
(c) Without calculating any more matrices, give the eigenvalues of the inverse of C and explain what would happen with the dominant eigenvector for C^{-1} as to how the ratio of the elements of $C^{-k} \underline{v}_{0}$ would change as k goes to infinity for almost any initial start vector \underline{v}_{0}.

Q2. (a) Given this system of equations and that $a_{0}:=1$ and $b_{0}:=0$, diagonalise the underlying matrix and hence find a_{n} and b_{n}. Check your answers for $n=0, n=1$ and $n=2$.

$$
a_{i+1}:=146 a_{i}-168 b_{i}, \quad b_{i+1}:=126 a_{i}-145 b_{i}
$$

(b) Explain from your answer to (a) why both sequences will increase at each step apart from once at the beginning.

Q3. (a) Rearrange these equations to the standard form and hence find all solutions: [8]

$$
\begin{align*}
1+3 x & =3(w+y+z) \\
4 x+6 y+5 z & =3+w \\
3+3 y+z & =x+2 w \\
5 w & =2(2+x-z) \tag{1}
\end{align*}
$$

(b) What is the solution to the equations above when $x=1$?
(c) Give an example of four equations in four unknowns which have three essentially different homogeneous solutions, give them, and check all three satisfy the homogeneous solution property.

Q4. (a) Find the inverse of $F:=\left(\begin{array}{ccc}2 & 2 & 1 \\ 5 & 5 & 3 \\ 1 & 2 & 5\end{array}\right)$ using row operations.
(b) Evaluate $\operatorname{det}(F)$ and $\operatorname{det}\left(F^{-1}\right)$ using Laplace expansions and explain why they are equal.
(c) Explain why a matrix with all of its entries being positive cannot have an inverse with all positive entries. Give an example of a matrix with all non-negative entries whose inverse is also totally non-negative.

