Math115 Test 1: 21st January 2004

Show all working and explanations of methods use to achieve full marks.

1. (a) Given the matrix $A:=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 2\end{array}\right]$ find the inverse of $A A^{T}$ and deduce its rank.
(b) Show that the rank of $A^{T} A$ is 2 and explain why it cannot have an inverse.
2. (a) Which matrix X satisfies this matrix equation?

$$
\left(3 X^{-1}+\left[\begin{array}{cc}
1 & -2 \\
2 & 2
\end{array}\right]\right)^{T}=\left[\begin{array}{cc}
4 & -1 \\
-8 & 2
\end{array}\right]
$$

(b) We define a matrix S as skew-symmetric if $S^{T}=-S$.
i. Prove that $\left(A^{T}-A\right)$ is always skew symmetric if A is square.
ii. Explain why $k B$ will be skew symmetric if B was skew symmetric.
iii. Find the only $n \times n$ matrix which is both symmetric and skew symmetric.
3. Solve this system of equations fully and give 2 different numerical solutions and check they are indeed solutions.

$$
\begin{aligned}
3 x_{1}+6 x_{2}+2 x_{3}+5 x_{4}+x_{5} & =-3 \\
2 x_{1}+4 x_{2}+5 x_{3}+3 x_{4}+x_{5} & =-8 \\
x_{1}+2 x_{2}-3 x_{3}+2 x_{4} & =5
\end{aligned}
$$

