Math115 Midterm Revision Questions:

1. Diagonalise this matrix A and hence find A^{5}.

$$
\left[\begin{array}{ccc}
5 & 18 & -15 \\
24 & 71 & -60 \\
30 & 90 & -76
\end{array}\right]
$$

2. Find the determinant of this matrix:

$$
\left[\begin{array}{ccc}
-1 & 4 & u \\
v & -3 & 1 \\
1 & -2 & 0
\end{array}\right]
$$

When is it singular?
3. If we have this matrix

$$
L:=\left[\begin{array}{ccccc}
-1 & 2 & -1 & -6 & -1 \\
1 & 1 & 4 & -12 & 3 \\
2 & -4 & 2 & 12 & 2
\end{array}\right]
$$

what are the solutions to $L x=\left[\begin{array}{c}-23 \\ -32 \\ 46\end{array}\right]$ and $L^{T} y=\left[\begin{array}{c}13 \\ -11 \\ 28 \\ -12 \\ 23\end{array}\right]$?
4. Find the eigenvalues and eigenvectors of $F:=\left[\begin{array}{cc}-4 & 2 \\ -3 & 1\end{array}\right]$. Evaluate F^{2} and find its eigenvectors and eigenvalues too.
5. By using $A v=\lambda v$, substitute twice for $A v$ in $A^{2} v$ and hence prove that v is also an eigenvector for A^{2} and its eigenvalue is λ^{2}.
6. Find two example of non-diagonal matrices which are self-inverse which are 2×2 and 3×3, and then give a pattern for one which is $n \times n$. Is it true that the product of any two self inverse matrices of the same size is also self inverse?
7. Use the adjoint formula to find the inverse of $\left[\begin{array}{cccc}\mathrm{a} & \mathrm{b} & 0 & 0 \\ \mathrm{c} & \mathrm{d} & 0 & 0 \\ 0 & 0 & e & \mathrm{f} \\ 0 & 0 & \mathrm{~g} & \mathrm{~h}\end{array}\right]$. What is the determinant?

