University College of Cape Breton

MATRIX ALGEBRA

February 2004

Time : 1.5 hours

Answer three whole questions, giving all working and reasoning.

Q1. Find all three eigenvectors of this matrix.

$$\left(\begin{array}{rrrr} -13 & 10 & 15 \\ -30 & 27 & 45 \\ 10 & -10 & -18 \end{array}\right)$$

Q2. (a) Given $R := \begin{pmatrix} 2 & x & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & x - 1 & 0 \\ 4x - 1 & 1 & 0 & -1 \end{pmatrix}$ evaluate and factorise det(R).

(b) When x = 2 what are all solutions to $R\underline{v} = \underline{0}$?

Q3. (a) Show that if
$$N := \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$
 then $N^2 = 0$.

(b) Find a 2×2 matrix M which isn't a multiple of N which has $M^2 = 0$.

- (c) Explain why no $n \times n$ matrix with all positive entries can have $M^2 = 0$.
- (d) Using algebra, prove that, if an $n \times n$ matrix M satisfies $M^2 = 0$ then det(M) = 0. Deduce from this that $rank(M) \le n - 1$.
- (e) Using this information deduce a general form for all possible 2×2 matrices M and give a pattern for an $n \times n$ matrix M with this property which has rank 1.
- **Q4.** Using diagonalisation, find the general solution to the system of equations $p_{k+1} = 42q_k \frac{61}{2}p_k$ and $q_{k+1} = 31q_k \frac{45}{2}p_k$ if $p_1 := 2$ and $q_1 := 11$.