University College of Cape Breton

Matrix Algebra

February 2004
Time : 1.5 hours

Answer three whole questions, giving all working and reasoning.

Q1. Find all three eigenvectors of this matrix.

$$
\left(\begin{array}{rrr}
-13 & 10 & 15 \\
-30 & 27 & 45 \\
10 & -10 & -18
\end{array}\right)
$$

Q2. (a) Given $R:=\left(\begin{array}{cccc}2 & x & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & x-1 & 0 \\ 4 x-1 & 1 & 0 & -1\end{array}\right)$ evaluate and factorise $\operatorname{det}(R)$.
(b) When $x=2$ what are all solutions to $R \underline{v}=\underline{0}$?

Q3. (a) Show that if $N:=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$ then $N^{2}=0$.
(b) Find a 2×2 matrix M which isn't a multiple of N which has $M^{2}=0$.
(c) Explain why no $n \times n$ matrix with all positive entries can have $M^{2}=0$.
(d) Using algebra, prove that, if an $n \times n$ matrix M satisfies $M^{2}=0$ then $\operatorname{det}(M)=0$. Deduce from this that $\operatorname{rank}(M) \leq n-1$.
(e) Using this information deduce a general form for all possible 2×2 matrices M and give a pattern for an $n \times n$ matrix M with this property which has rank 1 .

Q4. Using diagonalisation, find the general solution to the system of equations $p_{k+1}=$ $42 q_{k}-\frac{61}{2} p_{k}$ and $q_{k+1}=31 q_{k}-\frac{45}{2} p_{k}$ if $p_{1}:=2$ and $q_{1}:=11$.

