Chemistry 3403 Exp: GC-FID

- **Goals:**
- **1. Familiarization with GC-FID.**
- 2. Column efficiency. Affect of temperature on efficiency.
- **3. Van Deemter plot. Plot of H vs. Linear flow.**
- 4. Kovats retention index.

GC-FID Schematic

GC-FID Chromatography

Mobile phase: Carrier gas. Ex: He.

Stationary phase: Nonvolatile liquid bonded to a glass capillary column. Nonpolar.

GC Column

Column degrades at elevated temperatures and in presence of oxygen.

Reference: http://www.dot-red.com/wp-content/uploads/2009/09/dot-red-gc-column.jpg

http://www.thetruthaboutforensicscience.com/wp-content/uploads/2013/09/GC-column-inside.png

FID Detector:

The Flame Ionisation Detector

Column Efficiency:

Plate Height(H) and Number of theoretical plates(N).

N = 16
$$(\frac{t_r}{W})^2$$
 N = 5.54 $(\frac{t_r}{W_{1/2}})^2$

- Where
- t_r: retention time.
- W: Peak width.
- W_{1/2}: Peak width at half-height.

Van Deemter Equation:

Relates column efficiency to linear flow rate(μ).

$$\mathbf{H} = \mathbf{A} + \frac{B}{\mu} + \mathbf{C} \cdot \boldsymbol{\mu}$$

- A: Multiple paths.
- $\frac{B}{\mu}$: Longitudinal Diffusion.
- C·μ: Mass transfer.

$$\mu (cm/hr) = \frac{Volume flow(cm^3/min) \times \frac{60 \min}{hr}}{\pi r^2}$$

Kovats Retention Index:

Allows users to convert retention times(t_r) which are instrument dependent and convert them to a universal system of elution order.

Done by comparing retention times of a compound to those of known n-alkanes.

Kovats Retention Index cont:

$$\mathbf{I} = \mathbf{100}[\mathbf{n} + (\mathbf{N} - \mathbf{n}) \cdot \frac{Logt'_r(unk) - Logt'_r(n)}{Logt'_r(N) - Logt'_r(n)}$$

n: # of carbons in smaller n-alkane.N: # of carbons in larger n-alkane.

$$t_r' = t_r - t_m$$