Determining ΔH_{vap} of water using Clausius-Clapeyron equation.

$$\ln P = \frac{-\Delta H_{vap}}{RT} + C$$

Thus by measuring the vapor pressure of water(P(H₂O)) vs. T(K), can determine ΔH_{vap} .

By plotting the vapor pressure of water($P(H_2O)$) vs. $1/T(K^{-1})$, obtain a straight line.

$\Delta Hvap = -\mathbf{R} \times slope$

Vapor pressure of water(P(H₂O)) determined by measuring the volume of air + H₂O trapped in a graduated cylinder.

Volume = 7.60 mLHeight = 5.20 cm

Calculate:

- 1. Correct Volumes(-0.20 mL).
- 2. P_{exert} from height.
- **3.** P_{total} from $P_{total} = P_{atm} + P_{exert}$
- 4. Using 0°C trial calculate n from P_{total},
 T, V, and ideal gas law PV = nRT.
- 5. Using n determine P_{air} at each temp.
- 6. $P(H_2O)$ from $P(H_2O) = P_{total} P_{air}$