Chemistry 2201 Exp: GASES

Determining the Heat Capacity of a gas at constant pressure $\left(\mathrm{C}_{\mathrm{p}}\right)$ and constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$.

Acieved by measuring $\mathbf{3}$ pressures of a fixed amount of gas.

Clément and Desormes Method

NOTE: Gas is compressed.
$\mathbf{P}_{1}, T_{1}, \mathbf{V}_{1}$: Initial pressure, temperature and volume of the gas.
\mathbf{P}_{1} greater than atmospheric pressure $\left(\mathbf{P}_{2}\right)$. \mathbf{V}_{1} is the compressed volume of gas under study. Not volume of container.

Step 1:
Gas is allowed to expand from P_{1} to atmospheric pressure $\left(\mathbf{P}_{2}\right)$.

As gas expands it cools from T_{1} (room temperature) to T_{2}. Occupies volume of $\operatorname{vessel}\left(V_{2}\right)$.

Heat flows into vessel. Volume constant. Pressure increases to $\mathbf{P}_{\mathbf{3}}$ as gas heats back to room temperature.

Assume gas behaves Ideally. For an ideal gas the internal energy only depends on temperature.

By measuring three pressures $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}$, and $\mathbf{P}_{\mathbf{3}}$ the heat capacity ratio (γ) is determined.

$$
\gamma=\frac{\ln \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)}{\ln \left(\mathrm{P}_{1} / \mathrm{P}_{3}\right)}=\frac{\ln \mathrm{P}_{1}-\ln \mathrm{P}_{2}}{\ln \mathrm{P}_{1}-\ln \mathrm{P}_{3}}
$$

Can determine C_{P} and C_{V} from γ.

$$
\gamma=\frac{C_{P}}{C_{V}}=\frac{C_{V}+R}{C_{V}} \quad \mathbf{C}_{\mathbf{P}}=C_{V}+\mathbf{R}
$$

Pressure measured using dibutyl phthalate manometer. Measures pressure difference in vessel to atmospheric pressure.

$$
\mathrm{cm} \mathrm{DP} \times \frac{\text { density } \mathrm{DP}}{\text { density } \mathrm{Hg}}=\mathrm{cm} \mathrm{Hg}
$$

Density: dibutyl phthalate $=1.046 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ mercury $=13.55 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$

