Chemistry 2201 Exp: GASES

Determining the Heat Capacity of a gas at constant pressure (C_p) and constant volume (C_V) .

Acieved by measuring 3 pressures of a fixed amount of gas.

Clément and Desormes Method

NOTE: Gas is compressed.

 P_1 , T_1 , V_1 : Initial pressure, temperature and volume of the gas.

 P_1 greater than atmospheric pressure(P_2). V_1 is the compressed volume of gas under study. Not volume of container.

Step 1:

Gas is allowed to expand from P_1 to atmospheric pressure(P_2).

As gas expands it cools from T_1 (room temperature) to T_2 . Occupies volume of vessel(V_2).

Heat flows into vessel. Volume constant. Pressure increases to P_3 as gas heats back to room temperature.

Assume gas behaves Ideally. For an ideal gas the internal energy only depends on temperature.

By measuring three pressures P_1 , P_2 , and P_3 the heat capacity ratio(γ) is determined.

$$\gamma = \frac{\ln \left(\frac{P_1}{P_2}\right)}{\ln \left(\frac{P_1}{P_3}\right)} = \frac{\ln P_1 - \ln P_2}{\ln P_1 - \ln P_3}$$

Can determine C_P and C_V from γ .

$$\gamma = \frac{C_P}{C_V} = \frac{C_V + R}{C_V} \qquad C_P = C_V + R$$

Pressure measured using dibutyl phthalate manometer. Measures pressure difference in vessel to atmospheric pressure.

$$cm DP \times \frac{density DP}{density Hg} = cm Hg$$

Density: dibutyl phthalate = 1.046 g·cm⁻³ mercury = 13.55 g·cm⁻³