Determining the molar entropy change associated with the mixing of hat and cold

water.

- Entropy is a measure of the disorder in the system.
- Will be determining entropy changes associated with the mixing of hot and cold water.
- ΔS_1 : cooling of hot water ΔS_2 : cooling of dewar
- ΔS_3 : heating of cold water

- Record mass of dewar assembly empty. Record mass of dewar with hot water. Record mass of dewar with hot and cold water.
- **Determine masses and moles**($n_{\rm H}$ and $n_{\rm C}$).

Determine temperatures(T_C , T_H , T_F) T_C determined directly. From plot of Temperature vs. time.

Determine $C_{P,m,H}$ and $C_{P,m,C}$ from literature.

$$C_{P,DA} = \frac{n_{H}C_{P,m,H}(T_{F} - T_{H}) + n_{C}C_{P,m,C}(T_{F} - T_{C})}{(T_{H} - T_{F})}$$

NOTE: Sign of C_{P, DA} important.

Calculate ΔS_1 , ΔS_2 , and ΔS_3 . Note significance of sign of each.