Determining heat of combustion(ΔH_{comb}) of sucrose and thus ΔH_f for sucrose.

Must determine heat of combustion using bomb calorimeter.

Constant Volume

$$q_{COMB} = \Delta U_{COMB}$$

$$\mathbf{q}_{CAL} = \mathbf{C}_{CAL} \Delta \mathbf{T}$$
$$\mathbf{q}_{CAL} = -\mathbf{q}_{COMB}$$

Part I: Determining C_{CAL} using benzoic acid.

$$-\mathbf{q}_{\mathbf{COMB}} = -\mathbf{q}_{\mathbf{BA}} + -\mathbf{q}_{\mathbf{WIRE}}$$

Measure ΔT and get C_{CAL} .

Part II: Measure ΔT for sucrose run and use C_{CAL} from benzoic acid run to determine $-q_{COMR}$.

 $-\mathbf{q}_{\text{SUCROSE}} = -\mathbf{q}_{\text{COMB}} + \mathbf{q}_{\text{WIRE}}$

 $q_{SUCROSE} = \Delta U_{comb}$ for sucrose.

To determine ΔH_{COMB} .

$$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta \mathbf{n}_{\mathbf{gas}} \mathbf{R} \mathbf{T}$$

$$C_{12}H_{22}O_{11}(s) + 12O_{2}(g) \rightarrow 12CO_{2}(g) + 11H_{2}O(l)$$

$$\Delta n_{gas} = 12 \text{ mol} - 12 \text{ mol} = 0$$

Convert ΔH_{COMB} to ΔH_{COMB} .

To determine ΔH°_{f} .

$$C_{12}H_{22}O_{11}(s) + 12O_2(g) \rightarrow 12CO_2(g) + 11H_2O(l)$$

$$\Delta H_f^{\circ}[C_{12}H_{22}O_{11}(s)] = 12\Delta H_f^{\circ}[CO_2(g)] + 11\Delta H_f^{\circ}[H_2O(l)] - \Delta H_{comb}^{\circ}$$