Assigning Oxidation Numbers:

- Oxidation number of a free element or diatomic molecule is zero.
 Ex: Na(s), Cu(s), H₂(g), F₂(g)
- 2. In most cases the oxidation number of hydrogen is +1, oxygen is -2, and fluorine is
 -1 when combined with another element.
- 3. The sum of the oxidation numbers of each of the elements in a molecule or ion must equal the charge.

Reduction-Oxidation Reactions (REDOX):

Oxidation- Process in which oxidation state of an element increases. Species loses electrons.

<u>Reduction</u>- Process in which oxidation state of an element decreases. Species gains electrons.

Using Oxidation Numbers:

Ex:

$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$

Zn(s): oxidized(lost electrons). Cu²⁺(aq): reduced(gained electrons).

Ex:

$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

H₂(g): oxidized(lost electrons). N₂(g): reduced(gained electrons).

REDOX cont...:

OXIDATION $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$ **REDUCTION** $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$

- **REDOX** $Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$
- Zn(s): oxidized/reducing agent.
- Cu²⁺(aq): reduced/oxidizing agent.

Writing Balanced Redox

Reactions:

- Oxidation and reduction reactions occur together. Occur in acidic or basic medium. Ex: (acidic)
- $Br + MnO_4^- \rightarrow Br_2^+ + Mn^{2+}$
- **STEP 1: Identify the oxidized and reduced species and write the corresponding half reactions.**

Writing Balanced Redox Reactions cont...:

- STEP 2: Balance each of the half reactions. First atoms other than H and O. Balance O atoms by adding H_2O molecules and then balance H atoms by adding H⁺ ions.
- **STEP 3: Balance the number of electrons.**
- **STEP 4: Add both half reactions and simplify.**

Writing Balanced Redox Reactions

<u>cont...</u>

Balance the following redox reaction which occurs in a basic medium.

 $MnO_4^- + Br^- \rightarrow Br_2^- + Mn^{2+}$

NOTE: In basic medium add an equal number of OH⁻ ions to both sides to neutralize H⁺ ions.

 $OH^- + H^+ \rightarrow H_2O$

Electrochemical Cells:

Consider, $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Electrochemical Cells:

Electrode- Strip of metal.

- <u>Half cell</u>-Strip of metal in contact with its ion. <u>Salt bridge-</u> Allows passage of charge but not reactants.
- Anode:
- $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
- Cathode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Electrochemical Cells cont...:

Electrode Potentials:

The voltage recorded by an electrochemical cell is referred to as the electromotive force(emf) and given the following symbol.

Ecoll

Standard Electrode Potentials:

- Reaction occurs under standard conditions: 25°C and all substances are at unit concentration
- (1 M for all ions and 1 atm for all gases). Measured potential given the following symbol.

$$E^{o}_{cell}$$

The cell potential can be broken up into two components or half cells.

$$E_{cell}^{o} = E_{oxidation}^{o} + E_{reduction}^{o}$$

Electrochemical Cells cont...: $\mathbf{E_{cell}} = +1.10 \ \mathbf{V}$ Voltmeter Copyright @ 1994 by McGra Zinc K^+ CI anode Salt bridge Inc. All rights reserved

Copper cathode Cu²⁺ Cotton plugs SO_4^2 Zn²⁺ CuSO₄ solution ZnSO₄ solution

Figure 20.1

8

Standard Hydrogen Electrode(SHE):

$2H^+(aq)(1 M) + 2e^- \rightarrow H_2(g)(1 atm)$ $E^o = 0 V$

SHE/Cu

Zn/SHE

 $E_{cell}^{o} = +0.763 \,\mathrm{V}$

Standard Reduction Potentials:

- Can now determine the potential for each half cell. Tabulated and are referred to as standard reduction potentials.
- Ex: Calculate the standard cell potential for the following: $2Al(s) + 3Cu^{2+}(aq) \rightarrow 3Cu(s) + 2Al^{3+}$
- Given: $E_{red}^{\circ}(V)$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ +0.337 V $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ -1.66 V

Predicting Spontaneous Redox Reactions:

 $w_{electrical} = nFE_{cell}$ $\Delta G = -nFE_{cell}$

- **w**_{electrical} = electrical work
- **n** = # moles of electrons transferred
- F = Faraday constant(96485 C/mole)
- E_{cell} = Voltage of cell. NOTE: 1 J = 1 C·V ΔG Gibbs Free Energy

 $K_{G_{II}} = \# processoises point poet an eous$ $K_{G_{II}} = \# processoise not spont to the eous$

$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$

 $E_{cell}^{o} = +1.10 \text{ V}$ spontaneou s

Reverse reaction $Zn^{2+} + Cu(s) \rightarrow Zn(s) + Cu^{2+}$

 $E_{cell}^{o} = -1.10 \,\mathrm{V}$ not spontaneou s

Consider: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ *E*_{red}°(V) +0.337 V -0.763 V

Cu²⁺ more likely to be reduced.