Chemistry 1105 Lab: $\mathbf{p H}$ and Buffers

Goals:

1. To become familiar with the reactions of acids and bases. Strong and weak.
2. Calculate the $\left[\mathrm{H}^{+}(\mathrm{aq})\right],\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$, and pH.
3. Calculating pH of acids and bases. 4. Determine K_{A} or K_{B} and pH of a weak acid or base.
4. Buffers.

Proton Concentration:

Proton is a hydrogen atom that has lost its lone electron.
\mathbf{H}^{+}

\mathbf{H}^{+}very reactive. Attaches to water a molecule.
 $$
\mathbf{H}_{2} \mathrm{O}+\mathbf{H}^{+} \rightarrow \mathbf{H}_{3} \mathbf{O}^{+}
$$

$\mathrm{H}_{3} \mathrm{O}^{+}$: hydronium ion

$\mathrm{H}_{3} \mathrm{O}^{+}$same as $\mathrm{H}^{+}(\mathbf{a q})$.
Important to know concentration, $\left[\mathrm{H}^{+}(\mathbf{a q})\right]$.

Importance of $\mathbf{H}^{+}(\mathbf{a q})$ Concentration:

Knowing the concentration of \mathbf{H}^{+}very

 important.Ex: aquarium, pools, etc.

Fishtank

Aquarium in Toilet

Acids and Bases:

Bronsted/Lowry Theory

acid- Proton donor. Increase $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$.

 base- Proton acceptor. Decrease $\left[\mathrm{H}^{+}(\mathbf{a q})\right]$. The strength of an acid or base depends on their ability to donate or accept protons.
\mathbf{K}_{w} : Ion product of water:

Water also contains OH^{-}ions. At $25^{\circ} \mathrm{C}$

$$
\begin{gathered}
\mathbf{H}_{2} \mathbf{O}(\mathbf{l}) \leftrightharpoons \mathrm{H}^{+}(\mathbf{a q})+\mathbf{O H}-(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathbf{a q})\right][\mathrm{OH}(\mathbf{a q})]=1.0 \times 10^{-14}
\end{gathered}
$$ If $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ increases, $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ decreases. If you know one. Can calculate the other.

Quantifying Acidity(pH):

Could quantify acidity by concentration of aqueous \mathbf{H}^{+}. Not practicle.
pH is a logarithmic scale of \mathbf{H}^{+}concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \text { or } \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]
$$

pH Scale:

The pH scale ranges from 0 (very acidic) to 14(very basic). Pure water has a pH of 7 .
0 -
7

- $\quad 14$

Acidic
Neutral
Basic

Likewise,

 $\mathrm{pOH}=-\mathrm{Log}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$
$\mathrm{pH}+\mathrm{pOH}=14$

Questions:

1. Determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for the following: a) $\left[\mathrm{OH}^{-}\right]=1.5 \times 10^{-2} \mathrm{M}$

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=1.0 \times 10^{-14}
$$

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\frac{1 \times 10^{-14}}{1.5 \times 10^{-2} \mathrm{M}}=6.7 \times \mathbf{1 0}^{-13} \mathrm{M}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathbf{a q})\right]$
$\mathrm{pH}=-\log \left(6.7 \times 10^{-13} \mathrm{M}\right)=12.18$ BASIC
b) $\mathbf{p H}=7($ Neutral $) ; ~ c) ~ p H=4.91$ (Acidic)

Questions cont:

2. Determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for the following:
a) $\mathrm{pH}=4.32$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$ or
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\operatorname{antilog}(-4.32)=4.8 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=2.1 \times 10^{-10} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=2.3 \times 10^{-10} \mathrm{M},\left[\mathrm{OH}^{-}\right]=4.3 \times 10^{-5} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=1.3 \times 10^{-11} \mathrm{M},\left[\mathrm{OH}^{-}\right]=7.8 \times 10^{-4} \mathrm{M}$

pH of a Weak Acid:

Consider a 1.0 M weak acid HA.

$\mathbf{H A}(\mathrm{aq}) \leftrightharpoons \mathbf{H}^{+}(\mathbf{a q})+\mathrm{A}^{-}(\mathbf{a q})$

I:	1.0 M	0	0
C:	$-\mathbf{X}$	$+\mathbf{X}$	$+\mathbf{X}$
$\mathrm{E}:$	$1.0-\mathrm{X}$	\mathbf{X}	\mathbf{X}

If X is small. $1.0-X \approx 1.0$. $\mathbf{X}=\left[\mathbf{H}^{+}(\mathbf{a q})\right]$.
By measuring $\mathbf{p H}$. Can calculate $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$.

Questions cont:

3. Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a 0.250 M solution of HF acid? Weak acid. Has a $K_{A}=3.53 \times 10^{-4}$

\[

\]

Questions cont:

$$
K_{A}=\frac{(X)(X)}{(0.250-X)}=\frac{X^{2}}{(0.250-X)}
$$

Assume X is small.
0.250 - X ~ 0.250

$$
\begin{gathered}
3.53 \times 10^{-4}=\frac{\mathrm{X}^{2}}{(0.250)} \\
\mathrm{X}=\left[\mathrm{H}^{+}\right]=0.00939 \mathrm{M}
\end{gathered}
$$

Questions cont:

4. Find the pH of a 0.250 M solution of acetic acid? Weak acid. $K_{A}=1.76 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

$$
\begin{array}{lccc}
\text { I: } & 0.250 \mathrm{M} & 0 & 0 \\
\text { C: } & -\mathrm{X} & +\mathrm{X} & +\mathrm{X} \\
\text { E: } & 0.250-\mathrm{X} & \mathbf{X} & \mathbf{X} \\
\mathrm{~K}_{\mathrm{A}} & =\frac{\left[\mathrm{H}^{+}(\mathbf{a q})\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathbf{a q})\right]}
\end{array}
$$

Questions cont:

$$
K_{A}=\frac{(X)(X)}{(0.250-X)}=\frac{X^{2}}{(0.250-X)}
$$

Assume X is small.
$0.250-X \sim 0.250$

$$
1.76 \times 10^{-5}=\frac{X^{2}}{(0.250)}
$$

$$
\begin{gathered}
\mathrm{X}=\left[\mathrm{H}^{+}\right]=6.6 \times 10^{-4} \mathrm{M} \\
\mathrm{pH}=3.18
\end{gathered}
$$

Questions:

5. A 0.175 M weak acid solution has a pH of 3.25. Find the K_{A} of the acid.
pH of 3.25 corresponds to
$\left[\mathrm{H}^{+}(\mathbf{a q})\right]=5.6 \times 10^{-4} \mathrm{M}$
$\mathbf{H W}(\mathbf{a q}) \quad \leftrightharpoons \quad \mathbf{H}^{+}(\mathbf{a q}) \quad+\quad \mathbf{W}^{-}(\mathbf{a q})$
I: 0.175 M
C: $-5.6 \times 10^{-4} \mathrm{M}$
0

E:(0.175 M -5.6 $\left.\times 10^{-4} \mathrm{M}\right) 5.6 \times 10^{-4} \mathrm{M} \quad 5.6 \times 10^{-4} \mathrm{M}$

Questions cont:

$\mathrm{HW}(\mathbf{a q}) \quad \leftrightharpoons \quad \mathrm{H}^{+}(\mathbf{a q}) \quad+\mathrm{W}(\mathbf{a q})$

I: 0.175 M

C: $-\mathbf{5 . 6 \times 1 0 ^ { - 4 }} \mathrm{M}$
E: (0.174 M)

$+5.6 \times 10^{-4} \mathrm{M} \quad+5.6 \times 10^{-4} \mathrm{M}$ $5.6 \times 10^{-4} \mathrm{M} \quad 5.6 \times 10^{-4} \mathrm{M}$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left(5.6 \times 10^{-4} \mathrm{M}\right)\left(5.6 \times 10^{-4} \mathrm{M}\right)}{(0.174 \mathrm{M})}
$$

$$
K_{A}=1.8 \times 10^{-6}
$$

Questions:

6. Find the $[\mathrm{OH}-(\mathrm{aq})]$ and pH of a 0.33 M methylamine solution. $K_{B}=\mathbf{4 . 4 \times 1 0 ^ { - 4 }}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
I: 0.33 M
C: -X
E:0.33 - X

$$
\begin{gathered}
\mathbf{0} \\
+\mathbf{X} \\
\mathbf{X}
\end{gathered}
$$

$$
\begin{array}{r}
\mathbf{0} \\
+\mathbf{X} \\
\mathbf{X}
\end{array}
$$

$$
\mathrm{K}_{B}=\frac{\left[\mathrm{OH}^{-}(\mathbf{a q})\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{\mathbf{2}}(\mathbf{a q})\right]}
$$

Questions cont:

$$
\mathrm{K}_{B}=\frac{(\mathrm{X})(\mathrm{X})}{(0.33-\mathrm{X})}=\frac{\mathrm{X}^{2}}{(0.33-\mathrm{X})}
$$

Assume X is small.
0.33 - $\mathrm{X} \sim 0.33$

$$
\begin{array}{r}
4.4 \times 10^{-4}=\frac{\mathrm{X}^{2}}{(0.33)} \\
\mathrm{X}=[\mathrm{OH} \cdot]=0.012 \mathrm{M} \\
\mathrm{pH}=12.08
\end{array}
$$

pH of a Weak Base:

Consider a 1.0 M weak base B.

$\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

I: $\quad 1.0 \mathrm{M}$
C: $\quad-\mathrm{X}$
$\mathrm{E}: \quad 1.0-X$
0 0 +X +X X X

If X is small. $1.0-X \approx 1.0$. $\mathrm{X}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$.
By measuring pH. Can calculate [$\left.\mathrm{OH}^{-}(\mathrm{aq})\right]$.

Buffers:

Buffers:

A buffer is an aqueous system that allows only small changes in $\mathbf{p H}$ on the addition of acids or bases.
Consider a system consisting of equal amounts of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$.

If strong base added: $\begin{array}{ll}\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+ \\ \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}$ If strong acid added:
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

Identifying Buffers:

Buffers consist of a weak acid and its

 corresponding conjugate base.Ex: Is the system $\mathrm{NH}_{3} / \mathrm{NH}_{4} \mathbf{C l}$ a buffer?
Ex: Is the system $\mathrm{HCl} / \mathrm{Cl}^{-}$a buffer?

Calculating the pH of Buffer Systems:

 Can use K_{A} or K_{B} to determine $\mathbf{p H}$. DIFFICULT!!!
Henderson-Hasselbach Equation:

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{[\text { base }]}{\text { [acid }]} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{\text { moles of base }}{\text { moles of acid }}
\end{gathered}
$$

Consider a buffer consisting of the weak acid HA and its conjugate base A :

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Where $\mathbf{p K} \mathrm{K}_{\mathrm{A}}=-\log \left(\mathrm{K}_{\mathrm{A}}\right)$

Questions:

7. Calculate the $\mathbf{p H}$ of a buffer system that is 0.250 M HCN and 0.170 M in KCN. K_{A} for $\mathbf{H C N}=\mathbf{4 . 9 \times 1 0 ^ { - 1 0 }}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{[\mathrm{KCN}]}{[\mathrm{HCN}]} \\
\mathbf{p K}_{\mathrm{A}}=-\log \left(\mathbf{4 . 9 \times 1 0 ^ { - 1 0 }) = 9 . 3 1}\right. \\
\mathrm{pH}=9.31+\log \frac{\mathbf{0 . 1 7 0} \mathrm{M}}{0.250 \mathrm{M}} \\
\mathrm{pH}=9.14
\end{gathered}
$$

Questions:

8. What is the $\mathbf{p H}$ of a solution that contains 15.0 g of HF and 25.0 g of NaF in 125 mL ?

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{[\mathrm{NaF}]}{[\mathrm{HF}]}
$$

$[\mathrm{HF}]=6.00 \mathrm{M}$

$$
[\mathrm{NaF}]=4.76 \mathrm{M}
$$

$$
\mathbf{p H}=3.35
$$

Percent Ionization of a Weak Acid:

$\%$ ionization $=\frac{\text { ionized acid concentration }}{\text { initial concentration of acid }} \times 100 \%$
$\%$ ionization $=\frac{\left[H^{+}(a q)\right]}{[\mathrm{HA}(\mathrm{aq})]} \times 100 \%$

Percent Ionization of a Weak Base:

$\%$ ionization $=\frac{\text { ionized base concentration }}{\text { initial concentration of base }} \times 100 \%$

$\%$ ionization $=\frac{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{[\mathrm{B}(\mathrm{aq})]} \times 100 \%$

