Chemistry 1105 Lab: pH and Buffers

Goals:

- To become familiar with the reactions of acids and bases. Strong and weak.
 Calculate the [H⁺(aq)], [OH⁻(aq)], and pH.
- **3.** Calculating pH of acids and bases.
- **4. Determine** K_A or K_B and pH of a weak acid or base.
- 5. Buffers.

Proton Concentration:

Proton is a hydrogen atom that has lost its lone electron.

\mathbf{H}^+

H⁺ very reactive. Attaches to water a molecule.

$H_2O + H^+ \rightarrow H_3O^+$

- H₃O⁺: hydronium ion
- H₃O⁺ same as H⁺(aq).

Important to know concentration, [H+(aq)].

Importance of H⁺(aq) Concentration:

Knowing the concentration of H⁺ very important.

Ex: aquarium, pools, etc.

Fishtank

Aquarium in Toilet

Acids and Bases:

- **Bronsted/Lowry Theory**
- <u>acid</u>- Proton donor. Increase [H⁺(aq)].
- **<u>base</u> Proton acceptor. Decrease [H**⁺(aq)].
- The strength of an acid or base depends on their ability to donate or accept protons.

K_w: Ion product of water:

Water also contains OH^{-} ions. At 25 °C $H_2O(l) \Leftrightarrow H^+(aq) + OH^-(aq)$

$K_w = [H^+(aq)][OH^-(aq)] = 1.0 \times 10^{-14}$

If [H⁺(aq)] increases, [OH⁻(aq)] decreases. If you know one. Can calculate the other.

Quantifying Acidity(pH):

- Could quantify acidity by concentration of aqueous H⁺. Not practicle.
- pH is a logarithmic scale of H⁺ concentration.
 - $pH = -Log[H^+(aq)]$ or $pH = -Log[H_3O^+(aq)]$

pH Scale:

The pH scale ranges from 0(very acidic) to 14(very basic). Pure water has a pH of 7.

0 -	7	-	14
Acidic	Neutral		Basic

Likewise, pOH = -Log[OH⁻(aq)]

pH + pOH = 14

Questions:

Determine [H₃O⁺] for the following: a) [OH⁻] = 1.5×10⁻² M

 $K_w = [H^+(aq)][OH^-(aq)] = 1.0 \times 10^{-14}$

$$[\mathbf{H}^+(\mathbf{aq})] = \frac{1 \times 10^{-14}}{1.5 \times 10^{-2} \mathrm{M}} = 6.7 \times 10^{-13} \mathrm{M}$$

$pH = -Log[H^+(aq)]$ $pH = -Log(6.7 \times 10^{-13}M) = 12.18$ BASIC

b) pH = 7(Neutral); c) pH = 4.91(Acidic)

2. Determine [H₃O⁺] and [OH⁻] for the following:

- a) pH = 4.32
- $pH = -Log[H^+(aq)]$ or $[H^+(aq)] = antilog(-pH)$ $[H^+(aq)] = antilog(-4.32) = 4.8 \times 10^{-5} M$

b) $[H^+] = 2.3 \times 10^{-10} \text{ M}, [OH^-] = 4.3 \times 10^{-5} \text{ M}$

c) $[H^+] = 1.3 \times 10^{-11} M$, $[OH^-] = 7.8 \times 10^{-4} M$

- $[OH^{-}] = 2.1 \times 10^{-10} M$

pH of a Weak Acid:

Consider a 1.0 M weak acid HA.

$HA(aq) \Leftarrow H^+(aq) + A^-(aq)$

- I: 1.0 M 0 0
- C: -X +X +X
- E: 1.0 X X
- If X is small. $1.0 X \approx 1.0$.
- $\mathbf{X} = [\mathbf{H}^+(\mathbf{aq})].$
- By measuring pH. Can calculate [H⁺(aq)].

3. Find the [H₃O⁺] of a 0.250 M solution of HF acid? Weak acid. Has a $K_A = 3.53 \times 10^{-4}$ $HF(aq) \Leftrightarrow H^+(aq) + F^-(aq)$ 0.250 M I: C: -X $+\mathbf{X}$ $+\mathbf{X}$ 0.250 - X X **E:** X $[\mathbf{H}^+(\mathbf{aq})][\mathbf{F}^-(\mathbf{aq})]$ $\mathbf{K}_{A} =$ [HF(aq)]

$$K_A = \frac{(X)(X)}{(0.250 - X)} = \frac{X^2}{(0.250 - X)}$$

Assume X is small. 0.250 - X ~ 0.250

 $3.53 \times 10^{-4} = \frac{1}{(0.250)}$

 $X = [H^+] = 0.00939 M$

- 4. Find the pH of a 0.250 M solution of acetic acid? Weak acid. $K_A = 1.76 \times 10^{-5}$
- $CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$
 - I: 0.250 M 0 0
 - $\mathbf{C:} \quad \mathbf{-X} \quad \mathbf{+X} \quad \mathbf{+X}$
 - E: 0.250 X X X
 - $K_{A} = \frac{[H^{+}(aq)][CH_{3}COO^{-}(aq)]}{[CH_{3}COOH(aq)]}$

$$K_A = \frac{(X)(X)}{(0.250 - X)} = \frac{X^2}{(0.250 - X)}$$

Assume X is small. 0.250 - X ~ 0.250

 $X = [H^+] = 6.6 \times 10^{-4} M$ pH = 3.18

Questions:

5. A 0.175 M weak acid solution has a pH of 3.25. Find the K_A of the acid.

- pH of 3.25 corresponds to [H⁺(aq)] = 5.6×10⁻⁴ M

$HW(aq) \Leftrightarrow H^+(aq) + W^-(aq)$

- I: 0.175 M
- C: -5.6×10⁻⁴ M
- E: (0.174 M)

0 0 +5.6×10⁻⁴ M +5.6×10⁻⁴ M 5.6×10⁻⁴ M 5.6×10⁻⁴ M

$$K_{A} = \frac{(5.6 \times 10^{-4} \text{ M})(5.6 \times 10^{-4} \text{ M})}{(0.174 \text{ M})}$$

$$K_{A} = 1.8 \times 10^{-6}$$

Questions:

6. Find the [OH⁻(aq)] and pH of a 0.33 M methylamine solution. $K_B = 4.4 \times 10^{-4}$

 $\begin{array}{cccc} CH_{3}NH_{2}(aq) + H_{2}O(l) \rightleftharpoons OH^{-}(aq) + & CH_{3}NH_{3}^{+}(aq) \\ I: 0.33 M & 0 & 0 \\ C: -X & +X & +X \\ E: 0.33 - X & X & X \\ \hline OH^{-}(2q)][CH NH^{+}(2q)] \end{array}$

 $\mathbf{K}_{B} = \frac{[\mathbf{OH}^{-}(\mathbf{aq})][\mathbf{CH}_{3}\mathbf{NH}_{3}^{+}(\mathbf{aq})]}{[\mathbf{CH}_{3}\mathbf{NH}_{2}(\mathbf{aq})]}$

$$K_B = \frac{(X)(X)}{(0.33 - X)} = \frac{X^2}{(0.33 - X)}$$

Assume X is small. 0.33 - X ~ 0.33

$4.4 \times 10^{-4} = \frac{X^2}{(0.33)}$

 $X = [OH^-] = 0.012 M$ pH = 12.08

pH of a Weak Base:

Consider a 1.0 M weak base B.

$\mathbf{B}(\mathbf{aq}) + \mathbf{H}_2\mathbf{O}(\mathbf{l}) \Leftarrow \mathbf{HB}(\mathbf{aq}) + \mathbf{OH}^{-}(\mathbf{aq})$

 I: 1.0 M 0
 0

 C: -X +X +X

 E: 1.0 - X X
 X

If X is small. 1.0 – X ≈ 1.0. X = [OH⁻(aq)]. By measuring pH. Can calculate [OH⁻(aq)].

Buffers:

Buffers:

A buffer is an aqueous system that allows only small changes in pH on the addition of acids or bases.

- Consider a system consisting of equal amounts of HC₂H₃O₂ and C₂H₃O₂⁻.
- If strong base added: $HC_2H_3O_2(aq) + OH^{-}(aq) \rightarrow C_2H_3O_2^{-}(aq) + H_2O(l)$
- If strong acid added: $C_2H_3O_2(aq) + H^+(aq) \rightarrow HC_2H_3O_2(aq)$

Identifying Buffers:

- Buffers consist of a weak acid and its corresponding conjugate base.
- Ex: Is the system NH₃/NH₄Cl a buffer?
- **Ex: Is the system HCl/Cl⁻ a buffer?**

Calculating the pH of Buffer Systems:

Can use K_A or K_B to determine pH.

Henderson-Hasselbach Equation:

$$pH = pK_{A} + Log \frac{[base]}{[acid]}$$
$$pH = pK_{A} + Log \frac{moles \text{ of } base}{moles \text{ of } acid}$$

Consider a buffer consisting of the weak acid HA and its conjugate base A⁻.

$$pH = pK_A + Log \frac{[A^-]}{[HA]}$$

Where $pK_A = -Log(K_A)$

Questions:

7. Calculate the pH of a buffer system that is 0.250 M HCN and 0.170 M in KCN. K_{A} for HCN = 4.9×10⁻¹⁰ $pH = pK_A + Log \frac{[KCN]}{[HCN]}$ $pK_{\Delta} = -Log(4.9 \times 10^{-10}) = 9.31$ $pH = 9.31 + Log \frac{0.170 \text{ M}}{0.250 \text{ M}}$ pH = 9.14

Questions:

8. What is the pH of a solution that contains 15.0 g of HF and 25.0 g of NaF in 125 mL?

$$pH = pK_A + Log \frac{[NaF]}{[HF]}$$

[HF] = 6.00 M [NaF] = 4.76 M

$$pH = 3.35$$

Percent Ionization of a Weak Acid:

% ionization = $\frac{\text{ionized acid concentration}}{\text{initial concentration of acid}} \times 100$ %

% ionization =
$$\frac{[H^+(aq)]}{[HA(aq)]} \times 100 \%$$

Percent Ionization of a Weak Base:

% ionization = $\frac{\text{ionized base concentration}}{\text{initial concentration of base}} \times 100 \%$

% ionization =
$$\frac{[OH^{-}(aq)]}{[B(aq)]} \times 100 \%$$