Chemistry 1105 Lab: pH and K_a

Goals:

- 1. To determine the concentration of aqueous protons. Determine [H⁺(aq)] and pH.
- 2. Determine the Percent Ionization of Strong/Weak Acids and Bases.
- 3. Determine K_a of a weak acid.

Proton Concentration:

Proton is a hydrogen atom that has lost its lone electron.

H⁺ very reactive. Attaches to water a molecule.

$$H_2O + H^+ \rightarrow H_3O^+$$

H₃O⁺: hydronium ion

 H_3O^+ same as $H^+(aq)$.

Important to know concentration, [H+(aq)].

Importance of H⁺(aq) Concentration:

Knowing the concentration of H⁺ very important.

Ex: aquarium, pools, etc.

Fishtank

Aquarium in Toilet

Acids and Bases:

Bronsted/Lowry Theory

acid- Proton donor. Increase [H⁺(aq)].

base- Proton acceptor. Decrease [H⁺(aq)].

The strength of an acid or base depends on their ability to donate or accept protons.

K_w: Ion product of water:

Water also contains OH⁻ ions. At 25 °C

$$H_2O(l) \Leftrightarrow H^+(aq) + OH^-(aq)$$

$$K_{w} = [H^{+}(aq)][OH^{-}(aq)] = 1.0 \times 10^{-14}$$

If [H⁺(aq)] increases, [OH⁻(aq)] decreases. If you know one. Can calculate the other.

Quantifying Acidity(pH):

Could quantify acidity by concentration of aqueous H⁺. Not practicle.

pH is a logarithmic scale of H⁺ concentration.

$$pH = -Log[H^+(aq)]$$
 or $pH = -Log[H_3O^+(aq)]$

pH Scale:

The pH scale ranges from 0(very acidic) to 14(very basic). Pure water has a pH of 7.

0 - 7 - 14

Acidic Neutral Basic

Likewise, pOH = -Log[OH⁻(aq)]

$$pH + pOH = 14$$

Measuring pH:

pH meter.

Uses a probe to determine the pH of a solution.

From pH, can convert to [H⁺(aq)] or [OH⁻(aq)].

pH of a Weak Acid:

Consider a 1.0 M weak acid HA.

$$HA(aq) \leftrightharpoons H^+(aq) + A^-(aq)$$

I: 1.0 M 0

C: -X +X +X

E: 1.0 - X X

If X is small. $1.0 - X \approx 1.0$.

 $X = [H^{+}(aq)].$

By measuring pH. Can calculate [H⁺(aq)].

Percent Ionization of a Weak Acid:

% ionization =
$$\frac{\text{ionized acid concentration}}{\text{initial concentration of acid}} \times 100 \%$$

% ionization =
$$\frac{[H^{+}(aq)]}{[HA(aq)]} \times 100 \%$$

pH of a Weak Base:

Consider a 1.0 M weak base B.

$$B(aq) + H_2O(l) \Rightarrow HB(aq) + OH^{-}(aq)$$

I: 1.0 M

0

C: -**X**

+X +X

E: 1.0 - X

 \mathbf{X}

If X is small. $1.0 - X \approx 1.0$.

 $X = [OH^{-}(aq)].$

By measuring pH. Can calculate [OH⁻(aq)].

Percent Ionization of a Weak Base:

% ionization =
$$\frac{\text{ionized base concentration}}{\text{initial concentration of base}} \times 100 \%$$

% ionization =
$$\frac{[OH^{-}(aq)]}{[B(aq)]}$$
 x 100 %

Determining K_a of a Weak Acid:

Can calculate the K_a of a weak acid by creating equal amounts of the weak acid and its neutralized salt.

$$HA(aq) \leftrightharpoons H^+(aq) + A^-(aq)$$

$$I: \quad \mathbf{W} \quad 0 \quad 0$$

C:
$$-1/2W$$
 + $1/W$ + $1/2W$

E:
$$W - 1/2W$$
 1/2W 1/2W

$$HA(aq) \Leftarrow H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H^+(aq)][A^-(aq)]}{[HA(aq)]}$$

$$\mathbf{K_a} = \frac{[\mathbf{H}^+(\mathbf{aq})][\frac{1}{2}W]}{[\mathbf{W} - \frac{1}{2}W]} = \frac{[\mathbf{H}^+(\mathbf{aq})][\frac{1}{2}W]}{[\frac{1}{2}W]}$$

$$K_a = [H^+(aq)]$$

From pH, can calculate K_a.