Nomenclature Tutorial:

- This tutorial focuses on naming organic compounds using the IUPAC rules:
 - **1.Alkanes(C-C)**
 - 2. Alkenes(C=C)
 - 3. Alkynes(C=C)
 - 4. Cyclic structures
 - 5. Aromatic
 - 6. Functional groups

Organic Chemistry:

<u>Organic Chemistry-</u> That branch of chemistry which centres on carbon and its compounds.

Greek Prefixes:

mono	1	hexa	6
di	2	hepta	7
tri	3	octa	8
tetra	4	nona	9
penta	5	deca	10

Alkanes:

<u>Alkanes:</u> A hydrocarbon(compound containing only carbon and hydrogen) in which all carbon-carbon bonds are single bonds.

Carbon forms 4 bonds.

·Ċ·

Simplest alkane is methane.

Alkanes:

n	Compound	Name
1	CH ₄	methane
2	CH ₃ -CH ₃	ethane
3	CH ₃ -CH ₂ -CH ₃	propane
4	$CH_3 - CH_2 - CH_2 - CH_3$	n-butane
5	$CH_3 - (CH_2)_3 - CH_3$	n-pentane
6	$CH_3 - (CH_2)_4 - CH_3$	n-hexane
7	$CH_3 - (CH_2)_5 - CH_3$	n-heptane
8	$CH_3 - (CH_2)_6 - CH_3$	n-octane
9	$CH_3 - (CH_2)_7 - CH_3$	n-nonane
10	$CH_3 - (CH_2)_8 - CH_3$	n-decane

Drawing Organic Structures:

Consider n-butane: C_4H_{10} .

$CH_{3}-(CH_{2})_{2}-CH_{3}$

Drawing Organic Structures:

Consider n-butane: C₄H₁₀.

Line Notation:

The end of each line represents a carbon atom and the appropriate number of hydrogens.

Alkyl Groups:

Remove a H from CH₄(methane) to get a methyl group.

n-propyl

prefix - parent - suffix

Identify the longest chain of C atoms. Identify alkyl and/or side groups and location.

methylpropane

Ex:2

dimethylpropane

methylbutane

Ex:4

2-methylpentane

2,2-dimethylpentane

Ex:6

3-ethyl-2,2-dimethylpentane

Alkenes:

Alkenes are hydrocarbons which have a carbon-carbon double bond somewhere in the structure.

Naming Alkenes:

Name derived from the corresponding alkane, except the ending is changed from "ane" to "ene."

Alkenes cont...

For alkenes containing more than 4 carbon atoms, the position of the double bond must be indicated. Ex:

- $CH_2 = CH CH_2 CH_3$
- CH₃-CH=CH-CH₃

- 1-butene
- 2-butene

Alkenes cont...

In naming alkenes the largest chain is numbered to give the lowest number to the double bond.

5-methyl-2-hexene

Alkynes:

Hydrocarbons that contain atleast one carbon-carbon triple bond. When naming, the ending "ane" of the corresponding alkane is replaced with the ending "yne."

Alkynes cont:

H−**C**≡**C**−**H** ethyne. Also known as acetylene.

Alkynes cont:

Position of the triple bond must be indicated.

$H-C \equiv C-CH_2-CH_3$ 1-butyne

 $CH_3 - C \equiv C - CH_3$

2-butyne

Aromatic Hydrocarbons:

Derivatives of Benzene:

ethylbenzene

Phenyl group

methylbenzene or toluene

Disubstituted Benzene Ring:

Substituted Benzene:

Ex: dimethyl substituted benzene. Use ortho(o), meta(m), and para(p) for disubstituted benzenes.

Some Benzene Compounds:

m-chlorotoluene

o-chloroaniline

Identifying and Naming Functional

Groups:

Compound	Functional Group	Ending
Alkene	C=C	ene
Alkyne	C=C	yne
Alcohol	С-ОН	anol
Aldehyde	О 	anal
Ketone		anone
Carboxylic acid	О —С—ОН	anoic acid

Identifying and Naming Functional

Groups cont...:

Compound	Functional Group	Ending
Ether	C-O-C	оху
Ester	0 C	anoate
Amines	C-N	anamine
Amide	O 	anamide

ethanol

ЭH

cyclohexanol

Alcohols cont:

3-methyl-1-butanol

Compounds containing the carbonyl group:

ethanal

Aldehydes cont...:

2-methylbutanal

Ketones:

propanone

2-pentanone

Carboylic Acids:

Ethers:

$CH_3 - O - CH_2 - CH_3$ **methoxy** ethane **methoxyethane**

methyl ethanoate

Amines:

Amines are derivatives of ammonia(NH_3). CH_3 — NH_2 methanamine

Examples of primary amines.

Amines cont:

Secondary amines contain 2 and tertiary contain 3 hydrocarbons attached to N.

N,N-dimethylethanamine

Amides:

Amines combine the carbonyl(C=O) group with the amine(N).

