Chemistry 1105 Lab: Equilibrium

Experiment introduces and investigates the concept of

1. chemical equilibrium and
2. Le Chatelier's Principle

Equilibrium

An equilibrium is a chemical system that occurs both in the forward direction and reverse direction. Reversible reaction.

Consider the following reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
The reverse reaction also occurs,
$\mathbf{2 N H}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Equilibrium

Both reactions occur until the rate of the forward reaction equals the rate of the reverse reaction. System obtains equilibrium.

Equilibrium system written as,
$\mathbf{N}_{2}(\mathrm{~g})$
$+$
$3 \mathrm{H}_{2}(\mathrm{~g})$
$\leftrightharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$

Equilibrium Position

When a system is at equilibrium the amount of reactants and products appear to be constant.

The reactant and product concentration is not equal. Equilibrium tends to favor the reactants on the left or the products on the right.

Equilibrium Position

Consider the following equilibrium Reactants \leftrightharpoons Products Red Blue Equilibrium favors products: BLUE. Equilibrium favors reactants: RED.

Heterogeneous Equilibria:

Equilibria between substances in two or more

 phases. Example solid and aqueous.Ex: $\quad \mathrm{AgCl}(\mathrm{s}) \leftrightharpoons \mathrm{Ag}^{+}(\mathbf{a q}) \quad+\mathrm{Cl}^{-}(\mathbf{a q})$
Equilibrium favors products: no solid. Equilibrium favors reactants: solid.

Le Chatelier's Principle:

When an equilibrium is disturbed it will cause the equilibrium to shift in a direction that minimizes the effect and establish a new equilibrium.

Concentration Changes
Pressure Changes
Temperature Changes

Concentration Changes

Ex: $\mathrm{AgCl}(\mathrm{s}) \leftrightharpoons \mathrm{Ag}^{+}(\mathrm{aq}) \quad+\mathrm{Cl}^{-}(\mathrm{aq})$
Increase $\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]$. Equilibrium shifts to the
Left or Reactant side.
Observation: more solid.
Decrease $\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]$. Equilibrium shifts to the
Right or Product side.
Observation: less solid.

Temperature Changes

Exothermic/endothermic equilibria can have position altered by temperature changes. Consider the following ENDOTHERMIC $(+\Delta \mathrm{H})$ equilibria:

Reactants + heat $\leftrightharpoons \quad$ Products Temp decreases: Shifts to Left or Reactants. Temp increases: Shifts to Right or Products.

