Crystal Violet:

Goal of experiment is to study the kinetics and determine

- 1. the overall reaction order.
- **2.** determine the activation $energy(E_a)$

of the reaction between the dye crystal violet and hydroxide ion.

Kinetics:

The study of the rate or <u>speed</u> at which a chemical reactions occur converting reactants into products.

 Δ [reactant]: change in reactant concentration. Δ [product]: change in product concentration. Δ t: time period(t_{FINAL} - t_{INITIAL})

Rate Laws and Reaction Order:

Reaction rates depend on reactant concentration.

 $aA + bB \rightarrow products$ Rate Law relates reactant concentrations to reaction rates.

$Rate = k[A]^m[B]^n$

- k: rate constant
- m, n: exponents

[A], [B]: concentration of reactants in molarity

Reaction Order:

Reaction order refers to the values of the exponents in a rate law. In other words the value of m and n.

Example:

$Rate = k[A]^2[B]$

Rate 2nd order in A, 1st order in B, and 3rd order overall.

First Order Reaction:

$R \rightarrow products$

Rate = k[R] Integrated Rate Law:

$$In[R]_{t} = In[R]_{o} - kt$$

- $[R]_{o} = [R] \text{ at } t = 0 \text{ s.}$ $[R]_{t} = [R] \text{ at time t.}$
- **k** = **rate constant.**
- t = time.

First Order Reaction:

Plot of In[R] vs. time. If get a straight line proves first order.

Second Order Reactions:

For a single reactant.

$R \rightarrow products$

Rate $= k[R]^2$

Integrated Rate Law

Second Order Reaction:

Plot of 1/[R] vs. time. If get a straight line proves second order.

Kinetics of Crystal Violet Reaction:

As reaction occurs the crystal violet color disappears.

$\mathbf{CV}^{+}\left(\mathbf{aq}\right)$	+ $OH^{-}(aq) \rightarrow$	CVOH (aq)
Crystal	Hydroxide	Colorless
Violet	Ion	Product

The rate law for this reaction is: rate = k[CV⁺]^m[OH⁻]ⁿ

k is the rate constant, m is the order of the reaction with respect to CV⁺, and n is the order of the reaction with respect to OH⁻.

Part I: Determining Reaction Order:

rate = $k[CV^+]^m[OH^-]^n$

Determining m and n.

For m will monitor change in concentration as a function of time. Will measure Absorbance(A) of reaction mixture as a function of time.

"A" directly related to concentration of CV⁺.

Part I: Determining "m":

Absorbance(A) vs. time. Assume [OH⁻] constant.

Plot InA vs. time. If linear, m = 1.

Plot 1/A vs. time. If linear, m = 2.

Part I: Determining "n":

Will study reaction for two trials of $[OH^-]$. For trial 1, $[OH^-] = 0.0200$ M For trial 2, $[OH^-] = 0.0100$ M

Will determine rate constant for both trials, k'_1 and k'_2 . Determined from graph.

Determine n.

$$n = \frac{\log (k'_1/k'_2)}{\log ([OH^-]_1/[OH^-]_2)}$$

Part II: Determining Activation Energy(E_a):

Activation Energy(E_a): The minimum energy required in a collision for a reaction to occur.

Will study reaction at different temperatures.

Arrhenius Equation:

Relates reaction rate to temperature.

$$Ink = \frac{-E_A}{RT} + InA$$

- **E**_A: activation energy(J/mole)
- k: rate constant
- **R: 8.314 J/K·mole**
- **T: temperature in Kelvin**
- A: frequency factor

1/Temperature(K)

Plot ln(A) versus time for trials 1-4. The pseudo rate constants, k', can be calculated from the slopes of the plots.

Plot ln(k') versus 1/T. Find the slope of the best fit line equation. Remember that the slope equals $-E_a/R$, where R is the ideal gas constant (8.314 J/K·mol).