Chemistry 1105 Lab: Calorimetry

Goals:

- 1. Introduction to Calorimetry.
- 2. Determine Heat Capacity of calorimeter (C_{cal}) .
- 3. Determine Heat of Neutralization (ΔH_{neut}) .

Calorimetry:

q = amount of heat, measured in joules(J).

 $q = m \times sp_heat \times \Delta t$ where:

m = mass, measured in grams

 Δt = temperature change in °C.

sp_heat = the specific heat. $J/g \times^{\circ} C$ The specific heat is the amount of heat required to raise the temperature of one gram of substance by one degree.

Determine Heat Capacity of Calorimeter:

$$C_{cal} = mass \times sp_heat$$

Thus the heat change for calorimeter is:

$$\mathbf{q_{cal}} = \mathbf{C_{cal}} \times \Delta \mathbf{t}$$

Find C_{cal} by mixing hot and cold water.

$$-\mathbf{q}_{\text{hot}} = \mathbf{q}_{\text{cold}} + \mathbf{q}_{\text{cal}}$$

$$q_{cal} = -q_{hot} - q_{cold}$$

Find C_{cal} cont: Measure t_{hot} , t_{cold} , t_{final} .

$$q = m \times sp_heat \times \Delta t$$

$$q_{hot} = 50.0 \text{ g} \times 4.184 \text{ J/g} \times^{\circ} \text{C} \times (t_{final} - t_{hot})$$

$$q_{cold} = 50.0 \text{ g} \times 4.184 \text{ J/g} \times^{\circ} \text{C} \times (t_{final} - t_{cold})$$

$$\mathbf{q_{cal}} = -\mathbf{q_{hot}} - \mathbf{q_{cold}}$$

Find C_{cal} cont:

$$q_{cal} = -q_{hot} - q_{cold}$$

$$q_{cal} = C_{cal} \times \Delta t$$

$$C_{cal} = \frac{q_{cal}}{\Delta t} + 4.184J/g \times^{\circ} C \times 100.0g$$

 C_{cal} now includes the 100.0 g of solution.

Determining Heat of Neutralization (ΔH_{neut}):

Find q_{neutralization}

Measure final(t_{final}) and initial(t_{inital}) temps.

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(l) + heat$$

 $q_{neutralization} = heat liberated$

 $-\mathbf{q}_{\text{neutralization}} = +\mathbf{q}_{\text{cal}}$

Determining Heat of Neutralization cont:

$$q_{cal} = C_{cal} \times (t_{final} - t_{cold})$$

 $-\mathbf{q}_{\text{neutralization}} = \mathbf{q}_{\text{cal}}$

$$\Delta H_{neutral} = \frac{q_{neutralization}}{moles \, H^+} = \frac{q_{neutralization}}{moles \, OH^-}$$