Chemistry 1105 Lab: ASA Titration

Goals:

- **1. Technique of Titration.**
- 2. Prepare and standardize 0.1 M NaOH.
- **3.** Determine %ASA in the sample you synthesized in previous experiment.

Acid-Base Titration:

A titration is a process in which a controlled volume of one reagent(titrant) is added to a known amount or volume of a second reagent until a complete reaction is observed.

Base + Acid \rightarrow Salt + Water

Preparation of 0.1 M NaOH: Preparation of 200. mL of a solution of 0.1 M NaOH by dilution of a 1 M NaOH stock solution.

 $\mathbf{M}_1 \!\times\! \mathbf{V}_1 \!=\! \mathbf{M}_2 \!\times\! \mathbf{V}_2$

M₁: Molarity of stock solution

- **V₁: Volume of stock solution**
- M₂: Molarity of dilute solution
- **V₂: Volume of dilute solution**

Standardization of 0.1 M NaOH:

Base + Acid \rightarrow Salt + Water NaOH + KHC₈H₄O₄ \rightarrow KNaC₈H₄O + H₂O ? M g mL \downarrow moles KHC₈H₄O₄

moles KHC₈H₄O₄ = moles NaOH at equivalence point

Determination of the Endpoint/Equivalence Point:

Equivalence point determined using acidbase indicator.

Equivalence point is volume of base where the moles base = moles acid.

Endpoint. Volume of base that turns indicator color.

Determining the %ASA of Sample:

o-C₆H₄(OCOCH₃)COOH

C₆H₄ aromatic ring o-ortho (position of substituents)

$$\% ASA = \frac{mass of ASA(g) from titration}{mass of sample(g) weighed} \times 100\%$$

Base + Acid \rightarrow Salt + Water NaOH + 0-C₆H₄(OCOCH₃)COOH \rightarrow 0-C₆H₄(OCOCH₃)COONa + H₂O

