Chemistry 1105 Lab: ASA Titration

Goals:

1. Technique of Titration.
2. Prepare and standardize 0.1 M NaOH .
3. Determine \%ASA in the sample you synthesized in previous experiment.

Acid-Base Titration:

A titration is a process in which a controlled volume of one reagent(titrant) is added to a known amount or volume of a second reagent until a complete reaction is observed.

Base + Acid \rightarrow Salt + Water

Preparation of 0.1 M NaOH : Preparation of 200. $\mathbf{m L}$ of a solution of 0.1 M NaOH by dilution of a 1 M NaOH stock solution.

$$
M_{1} \times V_{1}=M_{2} \times V_{2}
$$

M_{1} : Molarity of stock solution V_{1} : Volume of stock solution
\mathbf{M}_{2} : Molarity of dilute solution $\mathbf{V}_{\mathbf{2}}$: Volume of dilute solution

Standardization of $0.1 \mathrm{M} \mathrm{NaOH}:$

Base + Acid \rightarrow Salt + Water
$\mathrm{NaOH}+\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow \mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
? M mL

\mathbf{g} \downarrow
moles $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$

moles $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}=$ moles NaOH at equivalence point

Determination of the Endpoint/Equivalence

Point:

 Equivalence point determined using acidbase indicator.

Equivalence point is volume of base where the moles base = moles acid.

Endpoint. Volume of base that turns indicator color.

Determining the \%ASA of Sample:

$$
\mathrm{o}_{6} \mathrm{C}_{4}\left(\mathrm{OCOCH}_{3}\right) \mathrm{COOH}
$$

$\mathrm{C}_{6} \mathrm{H}_{4}$ aromatic ring o-ortho (position of substituents)

$\% \mathrm{ASA}=\frac{\text { mass of ASA }(\mathrm{g}) \text { from titration }}{\text { mass of sample }(\mathrm{g}) \text { weighed }} \times 100 \%$

Base + Acid $\rightarrow \quad$ Salt + Water $\mathrm{NaOH}+\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCOCH}_{3}\right) \mathrm{COOH} \rightarrow 0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCOCH}_{3}\right) \mathrm{COONa}$ $+$ $\mathrm{H}_{2} \mathrm{O}$

Base $\quad+\quad$ Acid

$\mathrm{NaOH}+\mathrm{o}_{6} \mathrm{C}_{6}\left(\mathrm{OCOCH}_{3}\right) \mathrm{COOH} \rightarrow$
(now known)
0.1 M mL
\downarrow
? \%ASA of Sample

\uparrow g ASA
 \uparrow

